1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
|
// K-3D
// Copyright (c) 1995-2008, Timothy M. Shead
//
// Contact: tshead@k-3d.com
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public
// License along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
/** \file Declares structures to add extra "convenience" data to a mesh
* From k3dsdk/mesh_topology data. CUDA implementation
\author Evan Lezar (evanlezar@gmail.com)
*/
#include "cuda_mesh_topology_data.h"
#include "cuda_entry_points.h"
#include <k3dsdk/parallel/blocked_range.h>
#include <k3dsdk/parallel/parallel_for.h>
#include <k3dsdk/parallel/threads.h>
namespace k3d
{
namespace detail
{
void cuda_find_companion_worker(const mesh::indices_t& EdgePoints,
const mesh::indices_t& ClockwiseEdges,
const mesh::counts_t& Valences,
const mesh::indices_t& FirstEdges,
const mesh::indices_t& PointEdges,
mesh::bools_t& BoundaryEdges,
mesh::indices_t& AdjacentEdges);
class find_companion_worker
{
public:
find_companion_worker(const mesh::indices_t& EdgePoints,
const mesh::indices_t& ClockwiseEdges,
const mesh::counts_t& Valences,
const mesh::indices_t& FirstEdges,
const mesh::indices_t& PointEdges,
mesh::bools_t& BoundaryEdges,
mesh::indices_t& AdjacentEdges) :
m_edge_points(EdgePoints),
m_clockwise_edges(ClockwiseEdges),
m_valences(Valences),
m_first_edges(FirstEdges),
m_point_edges(PointEdges),
m_boundary_edges(BoundaryEdges),
m_adjacent_edges(AdjacentEdges)
{}
void operator()(const k3d::parallel::blocked_range<k3d::uint_t>& range) const
{
const k3d::uint_t edge_begin = range.begin();
const k3d::uint_t edge_end = range.end();
for(size_t edge = edge_begin; edge != edge_end; ++edge)
{
const uint_t vertex1 = m_edge_points[edge];
const uint_t vertex2 = m_edge_points[m_clockwise_edges[edge]];
/// Calculates the split points positions for each edge
const uint_t first_index = m_first_edges[vertex2];
const uint_t last_index = first_index + m_valences[vertex2];
for(uint_t i = first_index; i != last_index; ++i)
{
const uint_t companion = m_point_edges[i];
if(m_edge_points[m_clockwise_edges[companion]] == vertex1)
{
m_boundary_edges[edge] = false;
m_adjacent_edges[edge] = companion;
break;
}
}
}
}
private:
const mesh::indices_t& m_edge_points;
const mesh::indices_t& m_clockwise_edges;
const mesh::counts_t& m_valences;
const mesh::indices_t& m_first_edges;
const mesh::indices_t& m_point_edges;
mesh::bools_t& m_boundary_edges;
mesh::indices_t& m_adjacent_edges;
};
} // namespace detail
void cuda_create_edge_adjacency_lookup(const k3d::uint32_t* pdev_edgePoints, const k3d::uint32_t* pdev_clockwiseEdges, unsigned char* pdev_boundaryEdges, k3d::uint32_t* pdev_adjacentEdges, int num_edges, int num_points)
{
k3d::uint32_t* pdev_valences;
k3d::uint32_t* pdev_found_edges;
k3d::uint32_t* pdev_first_edges;
k3d::uint32_t* pdev_point_edges;
// since it is not known how many valence points the edges refer to, allocate maximum (all edges disconnected)
allocate_device_memory((void**)&pdev_valences, num_edges*2*sizeof(k3d::uint32_t));
int valence_size = create_vertex_valence_lookup_kernel_entry ( pdev_valences, (const unsigned int*)pdev_edgePoints, num_edges );
allocate_device_memory((void**)&pdev_first_edges, valence_size*sizeof(k3d::uint32_t));
allocate_device_memory((void**)&pdev_found_edges, valence_size*sizeof(k3d::uint32_t));
allocate_device_memory((void**)&pdev_point_edges, num_edges*sizeof(k3d::uint32_t));
synchronize_threads();
calculate_first_edge_entry ( (unsigned int*)pdev_first_edges, ( const unsigned int*)pdev_valences, valence_size );
calculate_point_edges_entry ((unsigned int*) pdev_point_edges,
(unsigned int*) pdev_found_edges,
(const unsigned int*) pdev_edgePoints,
(const unsigned int*) pdev_first_edges,
num_edges,
valence_size);
find_companion_kernel_entry ( pdev_boundaryEdges,
pdev_adjacentEdges,
num_edges,
pdev_edgePoints,
pdev_clockwiseEdges,
pdev_first_edges,
(unsigned int*) pdev_valences,
pdev_point_edges );
free_device_memory(pdev_valences);
free_device_memory(pdev_found_edges);
free_device_memory(pdev_first_edges);
free_device_memory(pdev_point_edges);
}
void create_edge_face_lookup(const mesh::indices_t& FaceFirstLoops, const mesh::indices_t& FaceLoopCounts, const mesh::indices_t& LoopFirstEdges, const mesh::indices_t& ClockwiseEdges, mesh::indices_t& EdgeFaces)
{
EdgeFaces.assign(ClockwiseEdges.size(), 0);
const size_t face_begin = 0;
const size_t face_end = face_begin + FaceFirstLoops.size();
for(size_t face = face_begin; face != face_end; ++face)
{
const size_t loop_begin = FaceFirstLoops[face];
const size_t loop_end = loop_begin + FaceLoopCounts[face];
for(size_t loop = loop_begin; loop != loop_end; ++loop)
{
const size_t first_edge = LoopFirstEdges[loop];
for(size_t edge = first_edge; ;)
{
EdgeFaces[edge] = face;
edge = ClockwiseEdges[edge];
if(edge == first_edge)
break;
}
}
}
}
void create_vertex_face_lookup(const mesh::indices_t& FaceFirstLoops, const mesh::indices_t& FaceLoopCounts, const mesh::indices_t& LoopFirstEdges, const mesh::indices_t& EdgePoints, const mesh::indices_t& ClockwiseEdges, const mesh::points_t& Points, mesh::indices_t& PointFirstFaces, mesh::counts_t& PointFaceCounts, mesh::indices_t& PointFaces)
{
std::vector<std::vector<size_t> > adjacency_list(Points.size());
const size_t face_begin = 0;
const size_t face_end = face_begin + FaceFirstLoops.size();
for(size_t face = face_begin; face != face_end; ++face)
{
const size_t loop_begin = FaceFirstLoops[face];
const size_t loop_end = loop_begin + FaceLoopCounts[face];
for(size_t loop = loop_begin; loop != loop_end; ++loop)
{
const size_t first_edge = LoopFirstEdges[loop];
for(size_t edge = first_edge; ;)
{
adjacency_list[EdgePoints[edge]].push_back(face);
edge = ClockwiseEdges[edge];
if(edge == first_edge)
break;
}
}
}
PointFirstFaces.assign(Points.size(), 0);
PointFaceCounts.assign(Points.size(), 0);
PointFaces.clear();
const size_t point_begin = 0;
const size_t point_end = point_begin + Points.size();
for(size_t point = point_begin; point != point_end; ++point)
{
PointFirstFaces[point] = PointFaces.size();
PointFaceCounts[point] = adjacency_list[point].size();
PointFaces.insert(PointFaces.end(), adjacency_list[point].begin(), adjacency_list[point].end());
}
}
void create_vertex_valence_lookup(const uint_t PointCount, const mesh::indices_t& EdgePoints, mesh::counts_t& Valences)
{
Valences.assign(PointCount, 0);
// Add 1 for each edge that starts at a point
uint_t edge_count = EdgePoints.size();
for (uint_t edge = 0; edge != edge_count; ++edge)
{
const uint_t edge_point = EdgePoints[edge];
if(edge_point >= Valences.size()) // In case PointCount was not known to the caller
Valences.resize(edge_point + 1, 0);
++Valences[edge_point];
}
}
void create_boundary_face_lookup(const mesh::indices_t& FaceFirstLoops, const mesh::indices_t& FaceLoopCounts, const mesh::indices_t& LoopFirstEdges, const mesh::indices_t& ClockwiseEdges, const mesh::bools_t& BoundaryEdges, const mesh::indices_t& AdjacentEdges, mesh::bools_t& BoundaryFaces)
{
BoundaryFaces.clear();
BoundaryFaces.resize(FaceFirstLoops.size());
const size_t face_begin = 0;
const size_t face_end = face_begin + FaceFirstLoops.size();
for(size_t face = face_begin; face != face_end; ++face)
{
const size_t loop_begin = FaceFirstLoops[face];
const size_t loop_end = loop_begin + FaceLoopCounts[face];
for(size_t loop = loop_begin; loop != loop_end; ++loop)
{
const size_t first_edge = LoopFirstEdges[loop];
for(size_t edge = first_edge; ;)
{
if (BoundaryEdges[edge])
{
BoundaryFaces[face] = true;
break;
}
edge = ClockwiseEdges[edge];
if(edge == first_edge)
break;
}
}
}
}
} // namespace k3d
|