File: cuda_mesh_topology_data.cpp

package info (click to toggle)
k3d 0.8.0.2-6
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 40,692 kB
  • ctags: 39,695
  • sloc: cpp: 171,303; ansic: 24,129; xml: 6,995; python: 5,796; makefile: 726; sh: 22
file content (253 lines) | stat: -rw-r--r-- 8,651 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
// K-3D
// Copyright (c) 1995-2008, Timothy M. Shead
//
// Contact: tshead@k-3d.com
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public
// License along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA

/** \file Declares structures to add extra "convenience" data to a mesh
 * 		From k3dsdk/mesh_topology data.  CUDA implementation
	\author Evan Lezar (evanlezar@gmail.com)
*/

#include "cuda_mesh_topology_data.h"
#include "cuda_entry_points.h"

#include <k3dsdk/parallel/blocked_range.h>
#include <k3dsdk/parallel/parallel_for.h>
#include <k3dsdk/parallel/threads.h>

namespace k3d
{

namespace detail
{

void cuda_find_companion_worker(const mesh::indices_t& EdgePoints,
								const mesh::indices_t& ClockwiseEdges,
								const mesh::counts_t& Valences,
								const mesh::indices_t& FirstEdges,
								const mesh::indices_t& PointEdges,
								mesh::bools_t& BoundaryEdges,
								mesh::indices_t& AdjacentEdges);

class find_companion_worker
{
public:
	find_companion_worker(const mesh::indices_t& EdgePoints,
			const mesh::indices_t& ClockwiseEdges,
			const mesh::counts_t& Valences,
			const mesh::indices_t& FirstEdges,
			const mesh::indices_t& PointEdges,
			mesh::bools_t& BoundaryEdges,
			mesh::indices_t& AdjacentEdges) :
				m_edge_points(EdgePoints),
				m_clockwise_edges(ClockwiseEdges),
				m_valences(Valences),
				m_first_edges(FirstEdges),
				m_point_edges(PointEdges),
				m_boundary_edges(BoundaryEdges),
				m_adjacent_edges(AdjacentEdges)
			{}

	void operator()(const k3d::parallel::blocked_range<k3d::uint_t>& range) const
	{
		const k3d::uint_t edge_begin = range.begin();
		const k3d::uint_t edge_end = range.end();
		for(size_t edge = edge_begin; edge != edge_end; ++edge)
		{
			const uint_t vertex1 = m_edge_points[edge];
			const uint_t vertex2 = m_edge_points[m_clockwise_edges[edge]];
			/// Calculates the split points positions for each edge

			const uint_t first_index = m_first_edges[vertex2];
			const uint_t last_index = first_index + m_valences[vertex2];
			for(uint_t i = first_index; i != last_index; ++i)
			{
				const uint_t companion = m_point_edges[i];
				if(m_edge_points[m_clockwise_edges[companion]] == vertex1)
				{
					m_boundary_edges[edge] = false;
					m_adjacent_edges[edge] = companion;
					break;
				}
			}
		}
	}

private:
	const mesh::indices_t& m_edge_points;
	const mesh::indices_t& m_clockwise_edges;
	const mesh::counts_t& m_valences;
	const mesh::indices_t& m_first_edges;
	const mesh::indices_t& m_point_edges;
	mesh::bools_t& m_boundary_edges;
	mesh::indices_t& m_adjacent_edges;
};

} // namespace detail

void cuda_create_edge_adjacency_lookup(const k3d::uint32_t* pdev_edgePoints, const k3d::uint32_t* pdev_clockwiseEdges, unsigned char* pdev_boundaryEdges, k3d::uint32_t* pdev_adjacentEdges, int num_edges, int num_points)
{
	k3d::uint32_t* pdev_valences;
	k3d::uint32_t* pdev_found_edges;
	k3d::uint32_t* pdev_first_edges;
	k3d::uint32_t* pdev_point_edges;
	// since it is not known how many valence points the edges refer to, allocate maximum (all edges disconnected)
	allocate_device_memory((void**)&pdev_valences, num_edges*2*sizeof(k3d::uint32_t));

	int valence_size = create_vertex_valence_lookup_kernel_entry ( pdev_valences, (const unsigned int*)pdev_edgePoints, num_edges );


	allocate_device_memory((void**)&pdev_first_edges, valence_size*sizeof(k3d::uint32_t));

	allocate_device_memory((void**)&pdev_found_edges, valence_size*sizeof(k3d::uint32_t));
	allocate_device_memory((void**)&pdev_point_edges, num_edges*sizeof(k3d::uint32_t));

	synchronize_threads();
	calculate_first_edge_entry ( (unsigned int*)pdev_first_edges, ( const unsigned int*)pdev_valences, valence_size );

	calculate_point_edges_entry ((unsigned int*) pdev_point_edges,
								(unsigned int*) pdev_found_edges,
								(const unsigned int*) pdev_edgePoints,
								(const unsigned int*) pdev_first_edges,
								num_edges,
								valence_size);

	find_companion_kernel_entry ( pdev_boundaryEdges,
								  pdev_adjacentEdges,
								  num_edges,
								  pdev_edgePoints,
								  pdev_clockwiseEdges,
								  pdev_first_edges,
								  (unsigned int*) pdev_valences,
								  pdev_point_edges );

	free_device_memory(pdev_valences);
	free_device_memory(pdev_found_edges);
	free_device_memory(pdev_first_edges);
	free_device_memory(pdev_point_edges);

}

void create_edge_face_lookup(const mesh::indices_t& FaceFirstLoops, const mesh::indices_t& FaceLoopCounts, const mesh::indices_t& LoopFirstEdges, const mesh::indices_t& ClockwiseEdges, mesh::indices_t& EdgeFaces)
{
	EdgeFaces.assign(ClockwiseEdges.size(), 0);

	const size_t face_begin = 0;
	const size_t face_end = face_begin + FaceFirstLoops.size();
	for(size_t face = face_begin; face != face_end; ++face)
	{
		const size_t loop_begin = FaceFirstLoops[face];
		const size_t loop_end = loop_begin + FaceLoopCounts[face];
		for(size_t loop = loop_begin; loop != loop_end; ++loop)
		{
			const size_t first_edge = LoopFirstEdges[loop];
			for(size_t edge = first_edge; ;)
			{
				EdgeFaces[edge] = face;

				edge = ClockwiseEdges[edge];
				if(edge == first_edge)
					break;
			}
		}
	}
}

void create_vertex_face_lookup(const mesh::indices_t& FaceFirstLoops, const mesh::indices_t& FaceLoopCounts, const mesh::indices_t& LoopFirstEdges, const mesh::indices_t& EdgePoints, const mesh::indices_t& ClockwiseEdges, const mesh::points_t& Points, mesh::indices_t& PointFirstFaces, mesh::counts_t& PointFaceCounts, mesh::indices_t& PointFaces)
{
	std::vector<std::vector<size_t> > adjacency_list(Points.size());

	const size_t face_begin = 0;
	const size_t face_end = face_begin + FaceFirstLoops.size();
	for(size_t face = face_begin; face != face_end; ++face)
	{
		const size_t loop_begin = FaceFirstLoops[face];
		const size_t loop_end = loop_begin + FaceLoopCounts[face];
		for(size_t loop = loop_begin; loop != loop_end; ++loop)
		{
			const size_t first_edge = LoopFirstEdges[loop];
			for(size_t edge = first_edge; ;)
			{
				adjacency_list[EdgePoints[edge]].push_back(face);

				edge = ClockwiseEdges[edge];
				if(edge == first_edge)
					break;
			}
		}
	}

	PointFirstFaces.assign(Points.size(), 0);
	PointFaceCounts.assign(Points.size(), 0);
	PointFaces.clear();

	const size_t point_begin = 0;
	const size_t point_end = point_begin + Points.size();
	for(size_t point = point_begin; point != point_end; ++point)
	{
		PointFirstFaces[point] = PointFaces.size();
		PointFaceCounts[point] = adjacency_list[point].size();
		PointFaces.insert(PointFaces.end(), adjacency_list[point].begin(), adjacency_list[point].end());
	}
}

void create_vertex_valence_lookup(const uint_t PointCount, const mesh::indices_t& EdgePoints, mesh::counts_t& Valences)
{
	Valences.assign(PointCount, 0);

	// Add 1 for each edge that starts at a point
	uint_t edge_count = EdgePoints.size();
	for (uint_t edge = 0; edge != edge_count; ++edge)
	{
		const uint_t edge_point = EdgePoints[edge];
		if(edge_point >= Valences.size()) // In case PointCount was not known to the caller
			Valences.resize(edge_point + 1, 0);
		++Valences[edge_point];
	}
}

void create_boundary_face_lookup(const mesh::indices_t& FaceFirstLoops, const mesh::indices_t& FaceLoopCounts, const mesh::indices_t& LoopFirstEdges, const mesh::indices_t& ClockwiseEdges, const mesh::bools_t& BoundaryEdges, const mesh::indices_t& AdjacentEdges, mesh::bools_t& BoundaryFaces)
{
	BoundaryFaces.clear();
	BoundaryFaces.resize(FaceFirstLoops.size());

	const size_t face_begin = 0;
	const size_t face_end = face_begin + FaceFirstLoops.size();
	for(size_t face = face_begin; face != face_end; ++face)
	{
		const size_t loop_begin = FaceFirstLoops[face];
		const size_t loop_end = loop_begin + FaceLoopCounts[face];
		for(size_t loop = loop_begin; loop != loop_end; ++loop)
		{
			const size_t first_edge = LoopFirstEdges[loop];
			for(size_t edge = first_edge; ;)
			{
				if (BoundaryEdges[edge])
				{
					BoundaryFaces[face] = true;
					break;
				}

				edge = ClockwiseEdges[edge];
				if(edge == first_edge)
					break;
			}
		}
	}
}

} // namespace k3d