1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
|
// K-3D
// Copyright (c) 1995-2005, Timothy M. Shead
//
// Contact: tshead@k-3d.com
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public
// License along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
/** \file
\brief Implements the a Least Squares Approximation solver and plotter.
\author Timothy M. Shead (tshead@k-3d.com)
\author JoaquĆn Duo (joaduo@lugmen.org.ar)
*/
#include <k3dsdk/document_plugin_factory.h>
#include <k3dsdk/expression/parser.h>
#include <k3dsdk/hints.h>
#include <k3dsdk/imaterial.h>
#include <k3dsdk/iuser_property.h>
#include <k3dsdk/log.h>
#include <k3dsdk/material_sink.h>
#include <k3dsdk/measurement.h>
#include <k3dsdk/mesh_source.h>
#include <k3dsdk/module.h>
#include <k3dsdk/node.h>
#include <k3dsdk/polyhedron.h>
#include <k3dsdk/property.h>
#include <k3dsdk/type_registry.h>
#include <k3dsdk/user_property_changed_signal.h>
#include <boost/multi_array.hpp>
#include <boost/numeric/ublas/vector.hpp>
#include <boost/numeric/ublas/matrix.hpp>
#include <boost/numeric/ublas/lu.hpp>
namespace module
{
namespace plot
{
namespace detail
{
class least_squares_solver_plotter
{
private:
std::vector<k3d::expression::parser*> function_parsers;
std::vector<k3d::double_t> coefficients;
public:
least_squares_solver_plotter()
{
}
~least_squares_solver_plotter()
{
// Free parsers' memory
for(k3d::uint32_t func_index=0; func_index< function_parsers.size(); ++func_index)
{
delete function_parsers[func_index];
}
}
//solve the linear system for the Least Square Approximation and return the coefficients
std::vector<k3d::double_t> solve(const k3d::mesh::points_t& input_points, std::vector<k3d::double_t> values)
{
// Evaluate each function on every point and create a new array for accesing the z values of input_points
k3d::uint64_t points_size = input_points.size();
boost::multi_array<k3d::double_t,1> points_z_value(boost::extents[points_size]);
boost::multi_array<k3d::double_t, 2> function_eval_on_points(boost::extents[function_parsers.size()][points_size]);
for(k3d::uint64_t point_index=0; point_index< points_size; ++point_index)
{
values[0] = input_points[point_index][0];
values[1] = input_points[point_index][1];
for(k3d::uint32_t func_index=0; func_index < function_parsers.size(); ++func_index)
{
function_eval_on_points[func_index][point_index] = function_parsers[func_index]->evaluate(&values[0]);
}
points_z_value[point_index] = input_points[point_index][2];
}
//Create the linear system for least squares
//Create the matrix A
boost::numeric::ublas::matrix<k3d::double_t> matrix_A(function_parsers.size(),function_parsers.size());
for(k3d::uint32_t j_index = 0; j_index < function_parsers.size(); ++j_index)
{
for(k3d::uint32_t i_index = 0; i_index < function_parsers.size(); ++i_index)
{
k3d::double_t scalar_product = 0;
for(k3d::uint64_t point_index=0; point_index < points_size; ++point_index)
{
scalar_product += function_eval_on_points[i_index][point_index]*
function_eval_on_points[j_index][point_index];
}
matrix_A(j_index,i_index) = scalar_product;
}
}
//Create the vector b
boost::numeric::ublas::vector<k3d::double_t> vector_b(function_parsers.size());
for(k3d::uint32_t j_index=0; j_index < function_parsers.size(); ++j_index)
{
k3d::double_t scalar_product = 0;
for(k3d::uint64_t point_index=0; point_index < points_size; ++point_index)
{
scalar_product += points_z_value[point_index]*
function_eval_on_points[j_index][point_index];
}
vector_b(j_index) = scalar_product;
}
// Solve the linear system
boost::numeric::ublas::permutation_matrix<> piv(function_parsers.size());
boost::numeric::ublas::lu_factorize(matrix_A, piv);
boost::numeric::ublas::lu_substitute(matrix_A, piv, vector_b);
boost::numeric::ublas::vector<k3d::double_t> & vector_x = vector_b;
//Save the result
for(k3d::uint32_t func_index=0; func_index < function_parsers.size() ; ++func_index)
{
coefficients.push_back(vector_x(func_index));
}
//return it
return coefficients;
}
//Plot the function given a grid.
void plot(
k3d::mesh::points_t::iterator point,
k3d::int32_t point_rows,
k3d::int32_t point_columns,
k3d::double_t width,
k3d::double_t height,
std::vector<k3d::double_t> values
)
{
k3d::vector3 i, j, k;
// Orientation k3d::PZ:
i = k3d::vector3(1, 0, 0);
j = k3d::vector3(0, 1, 0);
k = k3d::vector3(0, 0, 1);
// k3d::mesh::points_t::iterator point = output_points.begin();
for(k3d::uint64_t row = 0; row != point_rows; ++row)
{
const k3d::double_t row_percent = static_cast<k3d::double_t>(row) / static_cast<k3d::double_t>(point_rows - 1);
for(k3d::uint64_t column = 0; column != point_columns; ++column)
{
const k3d::double_t column_percent = static_cast<k3d::double_t>(column) / static_cast<k3d::double_t>(point_columns - 1);
const k3d::double_t u = k3d::mix(-0.5 * width, 0.5 * width, column_percent);
const k3d::double_t v = k3d::mix(-0.5 * height, 0.5 * height, row_percent);
values[0] = u;
values[1] = v;
k3d::double_t w = 0;
for(k3d::uint32_t func_index=0; func_index < function_parsers.size(); ++func_index)
{
w += coefficients[func_index] *
function_parsers[func_index]->evaluate(&values[0]);
}
*point++ = k3d::to_point((u * i) + (v * j) + (w * k));
}
}
}
// Function Parsers for the Leat Square Approximation
void create_function_parsers(std::vector<k3d::string_t> functions, k3d::string_t variables, k3d::string_t factory)
{
for(k3d::uint32_t func_index=0; func_index< functions.size(); ++func_index)
{
k3d::expression::parser * temp_parser = new k3d::expression::parser();
function_parsers.push_back(temp_parser);
if( !function_parsers[func_index]->parse(functions[func_index],variables) )
{
k3d::log() << error << factory << ": function [" << functions[func_index] << " ] parsing failed: " << function_parsers[func_index]->last_parse_error() << std::endl;
throw std::exception();
}
}
}
};
}
/////////////////////////////////////////////////////////////////////////////
// least_squares_plot
class least_squares_plot :
public k3d::material_sink<k3d::mesh_source<k3d::node > >
{
typedef k3d::material_sink<k3d::mesh_source<k3d::node > > base;
public:
least_squares_plot(k3d::iplugin_factory& Factory, k3d::idocument& Document) :
base(Factory, Document),
m_input_mesh(init_owner(*this) + init_name("input_mesh") + init_label(_("Input Mesh")) + init_description(_("Points to approximate")) + init_value<k3d::mesh*>(0)),
m_uv_rename(init_owner(*this) + init_name("uv_rename") + init_label(_("Rename u v")) + init_description(_("Renames the u,v variables to suit the variables from your function. Could be x,y for example")) + init_value(k3d::string_t(_("u,v")))),
m_columns(init_owner(*this) + init_name("columns") + init_label(_("Columns")) + init_description(_("Column number")) + init_value(15) + init_constraint(constraint::minimum(1)) + init_step_increment(1) + init_units(typeid(k3d::measurement::scalar))),
m_rows(init_owner(*this) + init_name("rows") + init_label(_("Rows")) + init_description(_("Row number")) + init_value(15) + init_constraint(constraint::minimum(1)) + init_step_increment(1) + init_units(typeid(k3d::measurement::scalar))),
m_width(init_owner(*this) + init_name("width") + init_label(_("Width")) + init_description(_("Grid width")) + init_value(20.0) + init_step_increment(0.1) + init_units(typeid(k3d::measurement::distance))),
m_height(init_owner(*this) + init_name("height") + init_label(_("Height")) + init_description(_("Grid height")) + init_value(20.0) + init_step_increment(0.1) + init_units(typeid(k3d::measurement::distance))),
m_output_coefficients(init_owner(*this) + init_name("output_coefficients") + init_label(_("Coefficients")) + init_description(_("Output Values of the coficients")) + init_value<k3d::string_t>("No values yet")),
m_user_property_changed_signal(*this)
{
m_columns.changed_signal().connect(k3d::hint::converter<
k3d::hint::convert<k3d::hint::any, k3d::hint::mesh_topology_changed> >(make_update_mesh_slot()));
m_rows.changed_signal().connect(k3d::hint::converter<
k3d::hint::convert<k3d::hint::any, k3d::hint::mesh_topology_changed> >(make_update_mesh_slot()));
m_material.changed_signal().connect(k3d::hint::converter<
k3d::hint::convert<k3d::hint::any, k3d::hint::none> >(make_update_mesh_slot()));
m_input_mesh.changed_signal().connect(k3d::hint::converter<
k3d::hint::convert<k3d::hint::any, k3d::hint::none> >(make_update_mesh_slot()));
m_width.changed_signal().connect(k3d::hint::converter<
k3d::hint::convert<k3d::hint::any, k3d::hint::mesh_geometry_changed> >(make_update_mesh_slot()));
m_height.changed_signal().connect(k3d::hint::converter<
k3d::hint::convert<k3d::hint::any, k3d::hint::mesh_geometry_changed> >(make_update_mesh_slot()));
m_user_property_changed_signal.connect(k3d::hint::converter<
k3d::hint::convert<k3d::hint::any, k3d::hint::none> >(make_update_mesh_slot()));
}
void on_update_mesh_topology(k3d::mesh& Output)
{
Output = k3d::mesh();
boost::scoped_ptr<k3d::polyhedron::primitive> polyhedron(k3d::polyhedron::create(Output));
polyhedron->shell_types.push_back(k3d::polyhedron::POLYGONS);
k3d::polyhedron::add_grid(Output, *polyhedron, 0, m_rows.pipeline_value(), m_columns.pipeline_value(), m_material.pipeline_value());
}
void on_update_mesh_geometry(k3d::mesh& Output)
{
const k3d::mesh* const input_mesh = m_input_mesh.pipeline_value();
if(!input_mesh)
return;
k3d::string_t variables = m_uv_rename.pipeline_value();
std::vector<k3d::string_t> functions;
std::vector<k3d::double_t> values(2, 0.0);
//Collect functions and variables
const k3d::iproperty_collection::properties_t& properties = k3d::node::properties();
for(k3d::iproperty_collection::properties_t::const_iterator property = properties.begin(); property != properties.end(); ++property)
{
if(!dynamic_cast<k3d::iuser_property*>(*property))
continue;
if((**property).property_type() == typeid(k3d::double_t))
{
variables += "," + (**property).property_name();
values.push_back(k3d::property::pipeline_value<k3d::double_t>(**property));
}
else if((**property).property_type() == typeid(k3d::string_t))
{
functions.push_back(k3d::property::pipeline_value<k3d::string_t>(**property));
}
else
{
k3d::log() << warning << factory().name() << ": user property [" << (**property).property_name() << "] with unsupported type [" << k3d::demangle((**property).property_type()) << "] will be ignored" << std::endl;
}
}
if(!functions.size())
return;
detail::least_squares_solver_plotter solver_and_plotter;
try
{ //Create the Solver and Parser the Functions
solver_and_plotter.create_function_parsers(functions, variables, factory().name());
}
catch(...)
{ //Couldn't parse the functions
return;
}
std::vector<k3d::double_t> coefficients;
try
{ // Solve the linear system for Least Squares Approximation
coefficients = solver_and_plotter.solve(*input_mesh->points.get(), values);
}
catch(...)
{ // Singular Matrix
k3d::log() << warning << factory().name() << ": Couldn't solve the system singular matrix." << std::endl;
return;
}
//Plot the result
solver_and_plotter.plot(const_cast<k3d::mesh::points_t&> (*Output.points).begin(),
m_rows.pipeline_value() + 1,
m_columns.pipeline_value() + 1,
m_width.pipeline_value(),
m_height.pipeline_value(),
values
);
// Print the functions' coefficients
k3d::string_t output_coefficients;
for(k3d::uint32_t func_index=0; func_index < functions.size() ; ++func_index)
{
std::ostringstream o;
if (!(o << coefficients[func_index] ))
k3d::log() << error <<"Could Convert it " << std::endl;
// Add every value
output_coefficients += o.str() + " ";
}
m_output_coefficients.set_value(output_coefficients);
}
static k3d::iplugin_factory& get_factory()
{
static k3d::document_plugin_factory<least_squares_plot, k3d::interface_list<k3d::imesh_source > > factory(
k3d::uuid(0x0368fa56, 0xf1cb4ab7, 0xac1c22b3, 0xbbe53330),
"LeastSquaresPlot",
_("Aproximates points with a surface given a set of equations."),
"Math",
k3d::iplugin_factory::EXPERIMENTAL);
return factory;
}
private:
k3d_data(k3d::mesh*, immutable_name, change_signal, no_undo, local_storage, no_constraint, read_only_property, no_serialization) m_input_mesh;
k3d_data(k3d::string_t, immutable_name, change_signal, with_undo, local_storage, no_constraint, writable_property, with_serialization) m_uv_rename;
k3d_data(k3d::int32_t, immutable_name, change_signal, with_undo, local_storage, with_constraint, measurement_property, with_serialization) m_columns;
k3d_data(k3d::int32_t, immutable_name, change_signal, with_undo, local_storage, with_constraint, measurement_property, with_serialization) m_rows;
k3d_data(k3d::double_t, immutable_name, change_signal, with_undo, local_storage, no_constraint, measurement_property, with_serialization) m_width;
k3d_data(k3d::double_t, immutable_name, change_signal, with_undo, local_storage, no_constraint, measurement_property, with_serialization) m_height;
k3d_data(k3d::string_t, immutable_name, change_signal, no_undo, local_storage, no_constraint, read_only_property, no_serialization) m_output_coefficients;
k3d::user_property_changed_signal m_user_property_changed_signal;
};
/////////////////////////////////////////////////////////////////////////////
// least_squares_plot_factory
k3d::iplugin_factory& least_squares_plot_factory()
{
return least_squares_plot::get_factory();
}
} // namespace plot
} // namespace module
|