1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
|
// MixKit -- Code library for multiresolution surface modeling
// Copyright (c) 1998, Michael Garland
//
// Contact: http://graphics.cs.uiuc.edu/~garland/software/qslim.html
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Library General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Library General Public License for more details.
//
// You should have received a copy of the GNU General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
/** \file
\brief Handy 3D geometrical primitives
\author Adapted for K-3D: Romain Behar (romainbehar@yahoo.com)
*/
#include "MxTriangle.h"
Vec3 triangle_raw_normal(const Vec3& v1, const Vec3& v2, const Vec3& v3)
{
Vec3 a = v2 - v1;
Vec3 b = v3 - v1;
return a^b;
}
double triangle_area(const Vec3& v1, const Vec3& v2, const Vec3& v3)
{
return 0.5 * norm(triangle_raw_normal(v1, v2, v3));
}
Vec3 triangle_normal(const Vec3& v1, const Vec3& v2, const Vec3& v3)
{
Vec3 n = triangle_raw_normal(v1, v2, v3);
n.Normalize();
return n;
}
Vec4 triangle_plane(const Vec3& v1, const Vec3& v2, const Vec3& v3)
{
Vec3 n = triangle_normal(v1, v2, v3);
return Vec4(n, -(n*v1));
}
Vec4 triangle_raw_plane(const Vec3& v1, const Vec3& v2, const Vec3& v3)
{
Vec3 n = triangle_raw_normal(v1, v2, v3);
return Vec4(n, -(n*v1));
}
const double FOUR_ROOT3 = 6.928203230275509;
double triangle_compactness(const Vec3& v1, const Vec3& v2, const Vec3& v3)
{
double L1 = norm2(v2 - v1);
double L2 = norm2(v3 - v2);
double L3 = norm2(v1 - v3);
return FOUR_ROOT3 * triangle_area(v1, v2, v3) / (L1+L2+L3);
}
|