File: bezier_triangle_patch_painter.cpp

package info (click to toggle)
k3d 0.8.0.2-6
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 40,692 kB
  • ctags: 39,695
  • sloc: cpp: 171,303; ansic: 24,129; xml: 6,995; python: 5,796; makefile: 726; sh: 22
file content (375 lines) | stat: -rw-r--r-- 14,328 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
// K-3D
// Copyright (c) 1995-2008, Timothy M. Shead
//
// Contact: tshead@k-3d.com
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public
// License along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA

/** \file
		\author Ashish Myles (marcianx@gmail.com)
*/

#include <k3d-i18n-config.h>
#include <k3dsdk/bezier_triangle_patch.h>
#include <k3dsdk/document_plugin_factory.h>
#include <k3dsdk/mesh_painter_gl.h>
#include <k3dsdk/painter_render_state_gl.h>
#include <k3dsdk/painter_selection_state_gl.h>
#include <k3dsdk/selection.h>
#include <k3dsdk/basic_math.h>

#include <boost/scoped_ptr.hpp>

#include <vector>

namespace module
{

namespace opengl
{

namespace painters
{

/////////////////////////////////////////////////////////////////////////////
// bezier_triangle_patch_painter

class bezier_triangle_patch_painter :
	public k3d::gl::mesh_painter
{
	typedef k3d::gl::mesh_painter base;

public:
	bezier_triangle_patch_painter(k3d::iplugin_factory& Factory, k3d::idocument& Document) :
		base(Factory, Document)
	{
	}

	void on_paint_mesh(const k3d::mesh& Mesh, const k3d::gl::painter_render_state& RenderState, k3d::iproperty::changed_signal_t& ChangedSignal)
	{
		extract_and_render_bezier_triangle(Mesh, RenderState, false);
	}
	
	void on_select_mesh(const k3d::mesh& Mesh, const k3d::gl::painter_render_state& RenderState, const k3d::gl::painter_selection_state& SelectionState, k3d::iproperty::changed_signal_t& ChangedSignal)
	{
		if(!SelectionState.select_component.count(k3d::selection::PATCH))
			return;

		extract_and_render_bezier_triangle(Mesh, RenderState, true);
	}
	
	static k3d::iplugin_factory& get_factory()
	{
		static k3d::document_plugin_factory<bezier_triangle_patch_painter, k3d::interface_list<k3d::gl::imesh_painter > > factory(
			k3d::uuid(0x8d38bda1, 0xdf47e212, 0x1e06bfb8, 0xa8f440c5),
			"OpenGLBezierTrianglePatchPainter",
			_("Renders Bezier triangle patches"),
			"OpenGL Painter",
			k3d::iplugin_factory::STABLE);

		return factory;
	}

	/// Render a rational triangle Bezier patch.
	static void gl_render_bezier_triangle(const std::vector<k3d::point4 > &control_points, k3d::uint_t order, k3d::bool_t select_mode)
	{
		assert(order > 0);
		assert(control_points.size() == ( order * (order + 1) / 2 ));

		if (!select_mode) {
			// TODO
			// - Should probably be moved into a separate painter at some point.

			// Display control mesh.
			//    0
			//   1 2
			//  3 4 5
			// 6 7 8 9
			for(k3d::uint_t i = 1; i < order; ++i) {
				for(k3d::uint_t j = 0; j < i; ++j) {
					k3d::uint_t beg = i * (i - 1) / 2;
					k3d::point3 p0 = cartesian(control_points[beg     + j  ]);
					k3d::point3 p1 = cartesian(control_points[beg + i + j  ]);
					k3d::point3 p2 = cartesian(control_points[beg + i + j+1]);
					glBegin(GL_LINE_LOOP);
						k3d::gl::vertex3d(p0);
						k3d::gl::vertex3d(p1);
						k3d::gl::vertex3d(p2);
					glEnd();
				}
			}
		}

		// The selection mode is passed in so that it may be
		// (eventually) used to render a lower-resolution patch on
		// selection for performance.

		// For now, use a power-of-two EVALUATION DENSITY at least as large
		// as the number of control points.
		// (Powers of two avoid errors related to evaluation
		// watertightness along the boundary.)
		k3d::uint_t num_segments = 1;
		while (num_segments < order)
			num_segments *= 2;
  		num_segments *= 4;

		// Pre-tabulate the factorials
		std::vector<k3d::double_t > fact_inv_tab(order);
		const k3d::double_t deg_fact  = k3d::factorial(order - 1);
		const k3d::double_t degm_fact = k3d::factorial(order - 2);
		for(k3d::uint_t n = 0; n < order; ++n)
			fact_inv_tab[n] = k3d::double_t(1.0) / k3d::factorial(k3d::double_t(n));

		// BEZIER TRIANGLES:
		//     http://en.wikipedia.org/wiki/B%C3%A9zier_triangle
		//
		// Triple-index notation with indices adding up to degree = order-1.
		// E.g. For deg 3, the control points c are labeled:
		// 	          (w=1)
		//             003
		//      c    102 012
		//         201 111 021
		// (u=1) 300 210 120 030 (v=1)
		//
		// For index ijk,
		//     u = i / deg,   v = j / deg,   w = k / deg
		//     which implies that  u + v + w = 1.
		//
		// Then, f(u, v) = Sum_{i,j,k} [ c_{ijk}  * choose(deg, i, j, k) * u^i * v^j * w^k ]
		// where choose(deg, i, j, k) = deg! / (i! j! k!)
		//
		std::vector<k3d::point4 >  eval_points ((num_segments + 1) * (num_segments + 2) / 2);
		std::vector<k3d::vector3 > eval_normals((num_segments + 1) * (num_segments + 2) / 2);

		// Going top-to-down order (decreasing k index) for best cache
		// coherency (see indexing below).
		// Indexing of eval_points and control_points.
		//          003                0
		//  ijk   102 012      -->    1 2  index
		//      201 111 021          3 4 5
		//    300 210 120 030       6 7 8 9
		// ...
		// index = (deg-k) * (deg-k+1) / 2 + j
		for(k3d::uint_t erow = 0; erow <= num_segments; ++erow)
		{
			// When  ei  =  num_segments  :=  uvw_count - 1,  then  u = 0.
			// Similarly for v and w.
			const k3d::uint_t ek = num_segments - erow;
			const k3d::double_t w = k3d::double_t(ek) / num_segments;
			for(k3d::uint_t ej = 0; ej <= num_segments - ek; ++ej)
			{
				const k3d::uint_t ei = num_segments - ej - ek;
				const k3d::double_t v = k3d::double_t(ej) / num_segments;
				const k3d::double_t u = k3d::double_t(1.0) - w - v;

				const k3d::uint_t eval_i = erow * (erow + 1) / 2 + ej;
				k3d::point4 &eval_pt = eval_points[eval_i];
				k3d::point4 eval_diff_u_homog; // derivatives of the homogeneous coordinates
				k3d::point4 eval_diff_v_homog;

				// eval_points[eval_i] and eval_normals[eval_i] should already be 0
				for(k3d::uint_t row = 0; row < order; ++row)
				{
					const k3d::uint_t k = order - 1 - row;
					const k3d::double_t wpk  = k3d::fast_pow(w, k);
					const k3d::double_t wpkm = k3d::fast_pow(w, k - 1);
					for(k3d::uint_t j = 0; j < order - k; ++j)
					{
						const k3d::uint_t i = order - 1 - k - j;
						const k3d::double_t vpjm = k3d::fast_pow(v, j - 1);
						const k3d::double_t upim = k3d::fast_pow(u, i - 1);
						const k3d::double_t vpj  = k3d::fast_pow(v, j);
						const k3d::double_t upi  = k3d::fast_pow(u, i);
						k3d::double_t coeff = deg_fact * fact_inv_tab[i] * fact_inv_tab[j] * fact_inv_tab[k];

						//         0
						//   i-,j-   i-,j
						//   3    ij    5
						// 6    7    8    9
						//
						k3d::uint_t cpts_ijk = row * (row + 1) / 2 + j;
						eval_pt += (coeff * upi * vpj * wpk) * to_vector(control_points[cpts_ijk]);

						// (Homogeneous) derivatives
						//          003                0
						//  ijk   102 012      -->    1 2  index
						//      201 111 021          3 4 5
						//    300 210 120 030       6 7 8 9
						const k3d::point4 &c_ijk = control_points[cpts_ijk];
						if (i > 0) {
							assert(int(cpts_ijk) - int(i) >= 0);
							k3d::uint_t cpts_imjk = cpts_ijk - row;
							const k3d::point4 &c_imjk = control_points[cpts_imjk];
							k3d::double_t coeff_du = degm_fact * fact_inv_tab[i - 1] * fact_inv_tab[j] * fact_inv_tab[k];
							eval_diff_u_homog += (coeff_du * upim * vpj * wpk) * (
									k3d::vector4( c_ijk[0] - c_imjk[0], c_ijk[1] - c_imjk[1],
									              c_ijk[2] - c_imjk[2], c_ijk[3] - c_imjk[3] ));
						}
						if (j > 0) {
							assert(int(cpts_ijk) - int(i) - 1 >= 0);
							k3d::uint_t cpts_ijkm = cpts_ijk - row - 1;
							const k3d::point4 &c_ijkm = control_points[cpts_ijkm];
							k3d::double_t coeff_dv = degm_fact * fact_inv_tab[i] * fact_inv_tab[j - 1] * fact_inv_tab[k];
							eval_diff_v_homog += (coeff_dv * upi * vpjm * wpk) * (
									k3d::vector4( c_ijk[0] - c_ijkm[0], c_ijk[1] - c_ijkm[1],
									              c_ijk[2] - c_ijkm[2], c_ijk[3] - c_ijkm[3] ));
						}
					}
				}

				// Since we have a rational patch in general, we need
				// to use the division rule to compute tangents.
				//     diff(a/b) = (b a' - a b') / b^2
				// Note that the denominator (b) and its u derivative (b')
				// are eval_pt[3] and eval_diff_u_homog[3], respectively
				// (eval_diff_v_homog[3] when differentiating w.r.t. v).
				//
				// Since we don't care about the derivative but the
				// normalized normal, there is no need to divide by the
				// denominator.
				//
				//const k3d::double_t denom_inv = (eval_pt[3] == 0.0) ? 1.0 : 1.0 / (eval_pt[3] * eval_pt[3]);
				k3d::vector3 eval_diff_u = k3d::vector3(
						(eval_diff_u_homog[0] * eval_pt[3] - eval_pt[0] * eval_diff_u_homog[3]), // * denom_inv,
						(eval_diff_u_homog[1] * eval_pt[3] - eval_pt[1] * eval_diff_u_homog[3]), // * denom_inv,
						(eval_diff_u_homog[2] * eval_pt[3] - eval_pt[2] * eval_diff_u_homog[3])  // * denom_inv
						);
				k3d::vector3 eval_diff_v = k3d::vector3(
						(eval_diff_v_homog[0] * eval_pt[3] - eval_pt[0] * eval_diff_v_homog[3]), // * denom_inv,
						(eval_diff_v_homog[1] * eval_pt[3] - eval_pt[1] * eval_diff_v_homog[3]), // * denom_inv,
						(eval_diff_v_homog[2] * eval_pt[3] - eval_pt[2] * eval_diff_v_homog[3])  // * denom_inv
						);

				// normal = the normalized cross-product of the derivatives.
				eval_normals[eval_i] = eval_diff_u ^ eval_diff_v;
				if (eval_normals[eval_i].length2() > 0)
					k3d::normalize(eval_normals[eval_i]);
			}
		}

		// Render using triangle strips
		for (k3d::uint_t ei = 1; ei <= num_segments; ++ei)
		{
			glBegin(GL_TRIANGLE_STRIP);
			k3d::uint_t eval_i  = ei * (ei + 1) / 2;
			k3d::uint_t eval_im = eval_i - ei;
			k3d::gl::normal3d(eval_normals[eval_i]);
			k3d::gl::vertex4d(eval_points [eval_i]);
			for (k3d::uint_t ej = 0; ej < ei; ++ej)
			{
				k3d::gl::normal3d(eval_normals[eval_im + ej]);
				k3d::gl::vertex4d(eval_points [eval_im + ej]);
				k3d::gl::normal3d(eval_normals[eval_i + ej + 1]);
				k3d::gl::vertex4d(eval_points [eval_i + ej + 1]);
			}

			glEnd();
		}
	}

private:
	/// Common computation for bezier_triangle_patch_painter::on_paint_mesh() and bezier_triangle_patch_painter::on_select_mesh().
	void extract_and_render_bezier_triangle(const k3d::mesh& Mesh, const k3d::gl::painter_render_state& RenderState, k3d::bool_t select_mode)
	{
		k3d::uint_t primitive_index = 0; // Need these indices (OpenGL selection "names") only for SELECTION MODE
		for(k3d::mesh::primitives_t::const_iterator primitive = Mesh.primitives.begin(); primitive != Mesh.primitives.end(); ++primitive, ++primitive_index)
		{
			boost::scoped_ptr<k3d::bezier_triangle_patch::const_primitive> bezier_triangle_patch(k3d::bezier_triangle_patch::validate(Mesh, **primitive));
			if (!bezier_triangle_patch)
				continue;

			const k3d::mesh::indices_t& patch_first_points = bezier_triangle_patch->patch_first_points;
			const k3d::mesh::orders_t& patch_orders = bezier_triangle_patch->patch_orders;
			const k3d::mesh::indices_t& patch_points = bezier_triangle_patch->patch_points;
			const k3d::mesh::weights_t& patch_point_weights = bezier_triangle_patch->patch_point_weights;
			const k3d::mesh::points_t& points = *Mesh.points;

			const k3d::uint_t num_patches = patch_orders.size();

			k3d::gl::store_attributes attributes;

			// Needed only for RENDERING MODE
			const k3d::mesh::selection_t& patch_selections = bezier_triangle_patch->patch_selections;
			glEnable(GL_LIGHTING);
			const k3d::color color = k3d::color(0.8, 0.8, 0.8);
			const k3d::color selected_color = RenderState.show_component_selection ? k3d::color(1, 0, 0) : color;

			glFrontFace(RenderState.inside_out ? GL_CW : GL_CCW);
			glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
			k3d::gl::set(GL_CULL_FACE, RenderState.draw_two_sided);

			if (select_mode) // Tokens are only for SELECTION MODE
				k3d::gl::push_selection_token(k3d::selection::PRIMITIVE, primitive_index);

			std::vector<k3d::point4> weighted_bezier_control_points;
			const k3d::uint_t patch_begin = 0;
			const k3d::uint_t patch_end = patch_begin + num_patches;
			for(k3d::uint_t patch = patch_begin; patch < patch_end; ++patch)
			{
				if (!select_mode) // Material is only for RENDERING MODE
					k3d::gl::material(GL_FRONT_AND_BACK, GL_DIFFUSE, patch_selections[patch] ? selected_color : color);

				const k3d::uint_t order = patch_orders[patch];
				assert(order > 0);
				const k3d::uint_t patch_size = (order * (order + 1)) / 2;

				// Convert control points to weighted points (since it is a rational patch in general).
				weighted_bezier_control_points.clear();
				weighted_bezier_control_points.reserve(patch_size);
				const k3d::uint_t point_begin = patch_first_points[patch];
				const k3d::uint_t point_end = point_begin + patch_size;
				assert(point_end <= patch_points.size());

				for(k3d::uint_t point = point_begin; point < point_end; ++point)
				{
					const k3d::double_t weight = patch_point_weights[point];
					weighted_bezier_control_points.push_back(k3d::point4(
						weight * points[patch_points[point]][0],
						weight * points[patch_points[point]][1],
						weight * points[patch_points[point]][2],
						weight));
				}

				if (select_mode) // Tokens are only for SELECTION MODE
					k3d::gl::push_selection_token(k3d::selection::PATCH, patch);

				// Tessellate/evaluate and render the patch.
				bezier_triangle_patch_painter::gl_render_bezier_triangle(weighted_bezier_control_points, order, false);

				if (select_mode) // Tokens are only for SELECTION MODE
					k3d::gl::pop_selection_token(); // PATCH
			}

			if (select_mode) // Tokens are only for SELECTION MODE
				k3d::gl::pop_selection_token(); // PRIMITIVE
		}
	}
};

/////////////////////////////////////////////////////////////////////////////
// bezier_triangle_patch_painter_factory

k3d::iplugin_factory& bezier_triangle_patch_painter_factory()
{
	return bezier_triangle_patch_painter::get_factory();
}

} // namespace painters

} // namespace opengl

} // namespace module