1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
|
// K-3D
// Copyright (c) 1995-2008, Timothy M. Shead
//
// Contact: tshead@k-3d.com
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public
// License along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
/** \file
\author Ashish Myles (marcianx@gmail.com)
*/
#include <k3d-i18n-config.h>
#include <k3dsdk/bezier_triangle_patch.h>
#include <k3dsdk/document_plugin_factory.h>
#include <k3dsdk/mesh_painter_gl.h>
#include <k3dsdk/painter_render_state_gl.h>
#include <k3dsdk/painter_selection_state_gl.h>
#include <k3dsdk/selection.h>
#include <k3dsdk/basic_math.h>
#include <boost/scoped_ptr.hpp>
#include <vector>
namespace module
{
namespace opengl
{
namespace painters
{
/////////////////////////////////////////////////////////////////////////////
// bezier_triangle_patch_painter
class bezier_triangle_patch_painter :
public k3d::gl::mesh_painter
{
typedef k3d::gl::mesh_painter base;
public:
bezier_triangle_patch_painter(k3d::iplugin_factory& Factory, k3d::idocument& Document) :
base(Factory, Document)
{
}
void on_paint_mesh(const k3d::mesh& Mesh, const k3d::gl::painter_render_state& RenderState, k3d::iproperty::changed_signal_t& ChangedSignal)
{
extract_and_render_bezier_triangle(Mesh, RenderState, false);
}
void on_select_mesh(const k3d::mesh& Mesh, const k3d::gl::painter_render_state& RenderState, const k3d::gl::painter_selection_state& SelectionState, k3d::iproperty::changed_signal_t& ChangedSignal)
{
if(!SelectionState.select_component.count(k3d::selection::PATCH))
return;
extract_and_render_bezier_triangle(Mesh, RenderState, true);
}
static k3d::iplugin_factory& get_factory()
{
static k3d::document_plugin_factory<bezier_triangle_patch_painter, k3d::interface_list<k3d::gl::imesh_painter > > factory(
k3d::uuid(0x8d38bda1, 0xdf47e212, 0x1e06bfb8, 0xa8f440c5),
"OpenGLBezierTrianglePatchPainter",
_("Renders Bezier triangle patches"),
"OpenGL Painter",
k3d::iplugin_factory::STABLE);
return factory;
}
/// Render a rational triangle Bezier patch.
static void gl_render_bezier_triangle(const std::vector<k3d::point4 > &control_points, k3d::uint_t order, k3d::bool_t select_mode)
{
assert(order > 0);
assert(control_points.size() == ( order * (order + 1) / 2 ));
if (!select_mode) {
// TODO
// - Should probably be moved into a separate painter at some point.
// Display control mesh.
// 0
// 1 2
// 3 4 5
// 6 7 8 9
for(k3d::uint_t i = 1; i < order; ++i) {
for(k3d::uint_t j = 0; j < i; ++j) {
k3d::uint_t beg = i * (i - 1) / 2;
k3d::point3 p0 = cartesian(control_points[beg + j ]);
k3d::point3 p1 = cartesian(control_points[beg + i + j ]);
k3d::point3 p2 = cartesian(control_points[beg + i + j+1]);
glBegin(GL_LINE_LOOP);
k3d::gl::vertex3d(p0);
k3d::gl::vertex3d(p1);
k3d::gl::vertex3d(p2);
glEnd();
}
}
}
// The selection mode is passed in so that it may be
// (eventually) used to render a lower-resolution patch on
// selection for performance.
// For now, use a power-of-two EVALUATION DENSITY at least as large
// as the number of control points.
// (Powers of two avoid errors related to evaluation
// watertightness along the boundary.)
k3d::uint_t num_segments = 1;
while (num_segments < order)
num_segments *= 2;
num_segments *= 4;
// Pre-tabulate the factorials
std::vector<k3d::double_t > fact_inv_tab(order);
const k3d::double_t deg_fact = k3d::factorial(order - 1);
const k3d::double_t degm_fact = k3d::factorial(order - 2);
for(k3d::uint_t n = 0; n < order; ++n)
fact_inv_tab[n] = k3d::double_t(1.0) / k3d::factorial(k3d::double_t(n));
// BEZIER TRIANGLES:
// http://en.wikipedia.org/wiki/B%C3%A9zier_triangle
//
// Triple-index notation with indices adding up to degree = order-1.
// E.g. For deg 3, the control points c are labeled:
// (w=1)
// 003
// c 102 012
// 201 111 021
// (u=1) 300 210 120 030 (v=1)
//
// For index ijk,
// u = i / deg, v = j / deg, w = k / deg
// which implies that u + v + w = 1.
//
// Then, f(u, v) = Sum_{i,j,k} [ c_{ijk} * choose(deg, i, j, k) * u^i * v^j * w^k ]
// where choose(deg, i, j, k) = deg! / (i! j! k!)
//
std::vector<k3d::point4 > eval_points ((num_segments + 1) * (num_segments + 2) / 2);
std::vector<k3d::vector3 > eval_normals((num_segments + 1) * (num_segments + 2) / 2);
// Going top-to-down order (decreasing k index) for best cache
// coherency (see indexing below).
// Indexing of eval_points and control_points.
// 003 0
// ijk 102 012 --> 1 2 index
// 201 111 021 3 4 5
// 300 210 120 030 6 7 8 9
// ...
// index = (deg-k) * (deg-k+1) / 2 + j
for(k3d::uint_t erow = 0; erow <= num_segments; ++erow)
{
// When ei = num_segments := uvw_count - 1, then u = 0.
// Similarly for v and w.
const k3d::uint_t ek = num_segments - erow;
const k3d::double_t w = k3d::double_t(ek) / num_segments;
for(k3d::uint_t ej = 0; ej <= num_segments - ek; ++ej)
{
const k3d::uint_t ei = num_segments - ej - ek;
const k3d::double_t v = k3d::double_t(ej) / num_segments;
const k3d::double_t u = k3d::double_t(1.0) - w - v;
const k3d::uint_t eval_i = erow * (erow + 1) / 2 + ej;
k3d::point4 &eval_pt = eval_points[eval_i];
k3d::point4 eval_diff_u_homog; // derivatives of the homogeneous coordinates
k3d::point4 eval_diff_v_homog;
// eval_points[eval_i] and eval_normals[eval_i] should already be 0
for(k3d::uint_t row = 0; row < order; ++row)
{
const k3d::uint_t k = order - 1 - row;
const k3d::double_t wpk = k3d::fast_pow(w, k);
const k3d::double_t wpkm = k3d::fast_pow(w, k - 1);
for(k3d::uint_t j = 0; j < order - k; ++j)
{
const k3d::uint_t i = order - 1 - k - j;
const k3d::double_t vpjm = k3d::fast_pow(v, j - 1);
const k3d::double_t upim = k3d::fast_pow(u, i - 1);
const k3d::double_t vpj = k3d::fast_pow(v, j);
const k3d::double_t upi = k3d::fast_pow(u, i);
k3d::double_t coeff = deg_fact * fact_inv_tab[i] * fact_inv_tab[j] * fact_inv_tab[k];
// 0
// i-,j- i-,j
// 3 ij 5
// 6 7 8 9
//
k3d::uint_t cpts_ijk = row * (row + 1) / 2 + j;
eval_pt += (coeff * upi * vpj * wpk) * to_vector(control_points[cpts_ijk]);
// (Homogeneous) derivatives
// 003 0
// ijk 102 012 --> 1 2 index
// 201 111 021 3 4 5
// 300 210 120 030 6 7 8 9
const k3d::point4 &c_ijk = control_points[cpts_ijk];
if (i > 0) {
assert(int(cpts_ijk) - int(i) >= 0);
k3d::uint_t cpts_imjk = cpts_ijk - row;
const k3d::point4 &c_imjk = control_points[cpts_imjk];
k3d::double_t coeff_du = degm_fact * fact_inv_tab[i - 1] * fact_inv_tab[j] * fact_inv_tab[k];
eval_diff_u_homog += (coeff_du * upim * vpj * wpk) * (
k3d::vector4( c_ijk[0] - c_imjk[0], c_ijk[1] - c_imjk[1],
c_ijk[2] - c_imjk[2], c_ijk[3] - c_imjk[3] ));
}
if (j > 0) {
assert(int(cpts_ijk) - int(i) - 1 >= 0);
k3d::uint_t cpts_ijkm = cpts_ijk - row - 1;
const k3d::point4 &c_ijkm = control_points[cpts_ijkm];
k3d::double_t coeff_dv = degm_fact * fact_inv_tab[i] * fact_inv_tab[j - 1] * fact_inv_tab[k];
eval_diff_v_homog += (coeff_dv * upi * vpjm * wpk) * (
k3d::vector4( c_ijk[0] - c_ijkm[0], c_ijk[1] - c_ijkm[1],
c_ijk[2] - c_ijkm[2], c_ijk[3] - c_ijkm[3] ));
}
}
}
// Since we have a rational patch in general, we need
// to use the division rule to compute tangents.
// diff(a/b) = (b a' - a b') / b^2
// Note that the denominator (b) and its u derivative (b')
// are eval_pt[3] and eval_diff_u_homog[3], respectively
// (eval_diff_v_homog[3] when differentiating w.r.t. v).
//
// Since we don't care about the derivative but the
// normalized normal, there is no need to divide by the
// denominator.
//
//const k3d::double_t denom_inv = (eval_pt[3] == 0.0) ? 1.0 : 1.0 / (eval_pt[3] * eval_pt[3]);
k3d::vector3 eval_diff_u = k3d::vector3(
(eval_diff_u_homog[0] * eval_pt[3] - eval_pt[0] * eval_diff_u_homog[3]), // * denom_inv,
(eval_diff_u_homog[1] * eval_pt[3] - eval_pt[1] * eval_diff_u_homog[3]), // * denom_inv,
(eval_diff_u_homog[2] * eval_pt[3] - eval_pt[2] * eval_diff_u_homog[3]) // * denom_inv
);
k3d::vector3 eval_diff_v = k3d::vector3(
(eval_diff_v_homog[0] * eval_pt[3] - eval_pt[0] * eval_diff_v_homog[3]), // * denom_inv,
(eval_diff_v_homog[1] * eval_pt[3] - eval_pt[1] * eval_diff_v_homog[3]), // * denom_inv,
(eval_diff_v_homog[2] * eval_pt[3] - eval_pt[2] * eval_diff_v_homog[3]) // * denom_inv
);
// normal = the normalized cross-product of the derivatives.
eval_normals[eval_i] = eval_diff_u ^ eval_diff_v;
if (eval_normals[eval_i].length2() > 0)
k3d::normalize(eval_normals[eval_i]);
}
}
// Render using triangle strips
for (k3d::uint_t ei = 1; ei <= num_segments; ++ei)
{
glBegin(GL_TRIANGLE_STRIP);
k3d::uint_t eval_i = ei * (ei + 1) / 2;
k3d::uint_t eval_im = eval_i - ei;
k3d::gl::normal3d(eval_normals[eval_i]);
k3d::gl::vertex4d(eval_points [eval_i]);
for (k3d::uint_t ej = 0; ej < ei; ++ej)
{
k3d::gl::normal3d(eval_normals[eval_im + ej]);
k3d::gl::vertex4d(eval_points [eval_im + ej]);
k3d::gl::normal3d(eval_normals[eval_i + ej + 1]);
k3d::gl::vertex4d(eval_points [eval_i + ej + 1]);
}
glEnd();
}
}
private:
/// Common computation for bezier_triangle_patch_painter::on_paint_mesh() and bezier_triangle_patch_painter::on_select_mesh().
void extract_and_render_bezier_triangle(const k3d::mesh& Mesh, const k3d::gl::painter_render_state& RenderState, k3d::bool_t select_mode)
{
k3d::uint_t primitive_index = 0; // Need these indices (OpenGL selection "names") only for SELECTION MODE
for(k3d::mesh::primitives_t::const_iterator primitive = Mesh.primitives.begin(); primitive != Mesh.primitives.end(); ++primitive, ++primitive_index)
{
boost::scoped_ptr<k3d::bezier_triangle_patch::const_primitive> bezier_triangle_patch(k3d::bezier_triangle_patch::validate(Mesh, **primitive));
if (!bezier_triangle_patch)
continue;
const k3d::mesh::indices_t& patch_first_points = bezier_triangle_patch->patch_first_points;
const k3d::mesh::orders_t& patch_orders = bezier_triangle_patch->patch_orders;
const k3d::mesh::indices_t& patch_points = bezier_triangle_patch->patch_points;
const k3d::mesh::weights_t& patch_point_weights = bezier_triangle_patch->patch_point_weights;
const k3d::mesh::points_t& points = *Mesh.points;
const k3d::uint_t num_patches = patch_orders.size();
k3d::gl::store_attributes attributes;
// Needed only for RENDERING MODE
const k3d::mesh::selection_t& patch_selections = bezier_triangle_patch->patch_selections;
glEnable(GL_LIGHTING);
const k3d::color color = k3d::color(0.8, 0.8, 0.8);
const k3d::color selected_color = RenderState.show_component_selection ? k3d::color(1, 0, 0) : color;
glFrontFace(RenderState.inside_out ? GL_CW : GL_CCW);
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
k3d::gl::set(GL_CULL_FACE, RenderState.draw_two_sided);
if (select_mode) // Tokens are only for SELECTION MODE
k3d::gl::push_selection_token(k3d::selection::PRIMITIVE, primitive_index);
std::vector<k3d::point4> weighted_bezier_control_points;
const k3d::uint_t patch_begin = 0;
const k3d::uint_t patch_end = patch_begin + num_patches;
for(k3d::uint_t patch = patch_begin; patch < patch_end; ++patch)
{
if (!select_mode) // Material is only for RENDERING MODE
k3d::gl::material(GL_FRONT_AND_BACK, GL_DIFFUSE, patch_selections[patch] ? selected_color : color);
const k3d::uint_t order = patch_orders[patch];
assert(order > 0);
const k3d::uint_t patch_size = (order * (order + 1)) / 2;
// Convert control points to weighted points (since it is a rational patch in general).
weighted_bezier_control_points.clear();
weighted_bezier_control_points.reserve(patch_size);
const k3d::uint_t point_begin = patch_first_points[patch];
const k3d::uint_t point_end = point_begin + patch_size;
assert(point_end <= patch_points.size());
for(k3d::uint_t point = point_begin; point < point_end; ++point)
{
const k3d::double_t weight = patch_point_weights[point];
weighted_bezier_control_points.push_back(k3d::point4(
weight * points[patch_points[point]][0],
weight * points[patch_points[point]][1],
weight * points[patch_points[point]][2],
weight));
}
if (select_mode) // Tokens are only for SELECTION MODE
k3d::gl::push_selection_token(k3d::selection::PATCH, patch);
// Tessellate/evaluate and render the patch.
bezier_triangle_patch_painter::gl_render_bezier_triangle(weighted_bezier_control_points, order, false);
if (select_mode) // Tokens are only for SELECTION MODE
k3d::gl::pop_selection_token(); // PATCH
}
if (select_mode) // Tokens are only for SELECTION MODE
k3d::gl::pop_selection_token(); // PRIMITIVE
}
}
};
/////////////////////////////////////////////////////////////////////////////
// bezier_triangle_patch_painter_factory
k3d::iplugin_factory& bezier_triangle_patch_painter_factory()
{
return bezier_triangle_patch_painter::get_factory();
}
} // namespace painters
} // namespace opengl
} // namespace module
|