1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
|
/*============================================================================
* Contains:
* S_solpos (computes solar position and intensity
* from time and place)
*
* INPUTS: (via posdata struct) year, daynum, hour,
* minute, second, latitude, longitude, timezone,
* intervl
* OPTIONAL: (via posdata struct) month, day, press, temp, tilt,
* aspect, function
* OUTPUTS: EVERY variable in the struct posdata
* (defined in solpos.h)
*
* NOTE: Certain conditions exist during which some of
* the output variables are undefined or cannot be
* calculated. In these cases, the variables are
* returned with flag values indicating such. In other
* cases, the variables may return a realistic, though
* invalid, value. These variables and the flag values
* or invalid conditions are listed below:
*
* amass -1.0 at zenetr angles greater than 93.0
* degrees
* ampress -1.0 at zenetr angles greater than 93.0
* degrees
* azim invalid at zenetr angle 0.0 or latitude
* +/-90.0 or at night
* elevetr limited to -9 degrees at night
* etr 0.0 at night
* etrn 0.0 at night
* etrtilt 0.0 when cosinc is less than 0
* prime invalid at zenetr angles greater than 93.0
* degrees
* sretr +/- 2999.0 during periods of 24 hour sunup or
* sundown
* ssetr +/- 2999.0 during periods of 24 hour sunup or
* sundown
* ssha invalid at the North and South Poles
* unprime invalid at zenetr angles greater than 93.0
* degrees
* zenetr limited to 99.0 degrees at night
*
* S_init (optional initialization for all input parameters in
* the posdata struct)
* INPUTS: struct posdata*
* OUTPUTS: struct posdata*
*
* (Note: initializes the required S_solpos INPUTS above
* to out-of-bounds conditions, forcing the user to
* supply the parameters; initializes the OPTIONAL
* S_solpos inputs above to nominal values.)
*
* S_decode (optional utility for decoding the S_solpos return code)
* INPUTS: long integer S_solpos return value, struct posdata*
* OUTPUTS: text to stderr
*
* Usage:
* In calling program, just after other 'includes', insert:
*
* #include "solpos00.h"
*
* Function calls:
* S_init(struct posdata*) [optional]
* .
* .
* [set time and location parameters before S_solpos call]
* .
* .
* int retval = S_solpos(struct posdata*)
* S_decode(int retval, struct posdata*) [optional]
* (Note: you should always look at the S_solpos return
* value, which contains error codes. S_decode is one option
* for examining these codes. It can also serve as a
* template for building your own application-specific
* decoder.)
*
* Martin Rymes
* National Renewable Energy Laboratory
* 25 March 1998
*
* 27 April 1999 REVISION: Corrected leap year in S_date.
* 13 January 2000 REVISION: SMW converted to structure posdata parameter
* and subdivided into functions.
* 01 February 2001 REVISION: SMW corrected ecobli calculation
* (changed sign). Error is small (max 0.015 deg
* in calculation of declination angle)
*----------------------------------------------------------------------------*/
#include <math.h>
#include <string.h>
#include <stdio.h>
#include "solpos.h"
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
*
* Structures defined for this module
*
*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
struct trigdata /* used to pass calculated values locally */
{
float cd; /* cosine of the declination */
float ch; /* cosine of the hour angle */
float cl; /* cosine of the latitude */
float sd; /* sine of the declination */
float sl; /* sine of the latitude */
};
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
*
* Temporary global variables used only in this file:
*
*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
static int month_days[2][13] = { { 0, 0, 31, 59, 90, 120, 151,
181, 212, 243, 273, 304, 334 },
{ 0, 0, 31, 60, 91, 121, 152,
182, 213, 244, 274, 305, 335 } };
/* cumulative number of days prior to beginning of month */
static float degrad = 57.295779513; /* converts from radians to degrees */
static float raddeg = 0.0174532925; /* converts from degrees to radians */
/*============================================================================
* Local function prototypes
============================================================================*/
static long int validate ( struct posdata *pdat);
static void dom2doy( struct posdata *pdat );
static void doy2dom( struct posdata *pdat );
static void geometry ( struct posdata *pdat );
static void zen_no_ref ( struct posdata *pdat, struct trigdata *tdat );
static void ssha( struct posdata *pdat, struct trigdata *tdat );
static void sbcf( struct posdata *pdat, struct trigdata *tdat );
static void tst( struct posdata *pdat );
static void srss( struct posdata *pdat );
static void sazm( struct posdata *pdat, struct trigdata *tdat );
static void refrac( struct posdata *pdat );
static void amass( struct posdata *pdat );
static void prime( struct posdata *pdat );
static void etr( struct posdata *pdat );
static void tilt( struct posdata *pdat );
static void localtrig( struct posdata *pdat, struct trigdata *tdat );
/*============================================================================
* Long integer function S_solpos, adapted from the VAX solar libraries
*
* This function calculates the apparent solar position and the
* intensity of the sun (theoretical maximum solar energy) from
* time and place on Earth.
*
* Requires (from the struct posdata parameter):
* Date and time:
* year
* daynum (requirement depends on the S_DOY switch)
* month (requirement depends on the S_DOY switch)
* day (requirement depends on the S_DOY switch)
* hour
* minute
* second
* interval DEFAULT 0
* Location:
* latitude
* longitude
* Location/time adjuster:
* timezone
* Atmospheric pressure and temperature:
* press DEFAULT 1013.0 mb
* temp DEFAULT 10.0 degrees C
* Tilt of flat surface that receives solar energy:
* aspect DEFAULT 180 (South)
* tilt DEFAULT 0 (Horizontal)
* Function Switch (codes defined in solpos.h)
* function DEFAULT S_ALL
*
* Returns (via the struct posdata parameter):
* everything defined in the struct posdata in solpos.h.
*----------------------------------------------------------------------------*/
long S_solpos (struct posdata *pdat)
{
long int retval;
struct trigdata trigdat, *tdat;
tdat = &trigdat; /* point to the structure */
/* initialize the trig structure */
tdat->sd = -999.0; /* flag to force calculation of trig data */
tdat->cd = 1.0;
tdat->ch = 1.0; /* set the rest of these to something safe */
tdat->cl = 1.0;
tdat->sl = 1.0;
if ((retval = validate ( pdat )) != 0) /* validate the inputs */
return retval;
if ( pdat->function & L_DOY )
doy2dom( pdat ); /* convert input doy to month-day */
else
dom2doy( pdat ); /* convert input month-day to doy */
if ( pdat->function & L_GEOM )
geometry( pdat ); /* do basic geometry calculations */
if ( pdat->function & L_ZENETR ) /* etr at non-refracted zenith angle */
zen_no_ref( pdat, tdat );
if ( pdat->function & L_SSHA ) /* Sunset hour calculation */
ssha( pdat, tdat );
if ( pdat->function & L_SBCF ) /* Shadowband correction factor */
sbcf( pdat, tdat );
if ( pdat->function & L_TST ) /* true solar time */
tst( pdat );
if ( pdat->function & L_SRSS ) /* sunrise/sunset calculations */
srss( pdat );
if ( pdat->function & L_SOLAZM ) /* solar azimuth calculations */
sazm( pdat, tdat );
if ( pdat->function & L_REFRAC ) /* atmospheric refraction calculations */
refrac( pdat );
if ( pdat->function & L_AMASS ) /* airmass calculations */
amass( pdat );
if ( pdat->function & L_PRIME ) /* kt-prime/unprime calculations */
prime( pdat );
if ( pdat->function & L_ETR ) /* ETR and ETRN (refracted) */
etr( pdat );
if ( pdat->function & L_TILT ) /* tilt calculations */
tilt( pdat );
return 0;
}
/*============================================================================
* Void function S_init
*
* This function initiates all of the input parameters in the struct
* posdata passed to S_solpos(). Initialization is either to nominal
* values or to out of range values, which forces the calling program to
* specify parameters.
*
* NOTE: This function is optional if you initialize ALL input parameters
* in your calling code. Note that the required parameters of date
* and location are deliberately initialized out of bounds to force
* the user to enter real-world values.
*
* Requires: Pointer to a posdata structure, members of which are
* initialized.
*
* Returns: Void
*----------------------------------------------------------------------------*/
void S_init(struct posdata *pdat)
{
pdat->day = -99; /* Day of month (May 27 = 27, etc.) */
pdat->daynum = -999; /* Day number (day of year; Feb 1 = 32 ) */
pdat->hour = -99; /* Hour of day, 0 - 23 */
pdat->minute = -99; /* Minute of hour, 0 - 59 */
pdat->month = -99; /* Month number (Jan = 1, Feb = 2, etc.) */
pdat->second = -99; /* Second of minute, 0 - 59 */
pdat->year = -99; /* 4-digit year */
pdat->interval = 0; /* instantaneous measurement interval */
pdat->aspect = 180.0; /* Azimuth of panel surface (direction it
faces) N=0, E=90, S=180, W=270 */
pdat->latitude = -99.0; /* Latitude, degrees north (south negative) */
pdat->longitude = -999.0; /* Longitude, degrees east (west negative) */
pdat->press = 1013.0; /* Surface pressure, millibars */
pdat->solcon = 1367.0; /* Solar constant, 1367 W/sq m */
pdat->temp = 15.0; /* Ambient dry-bulb temperature, degrees C */
pdat->tilt = 0.0; /* Degrees tilt from horizontal of panel */
pdat->timezone = -99.0; /* Time zone, east (west negative). */
pdat->sbwid = 7.6; /* Eppley shadow band width */
pdat->sbrad = 31.7; /* Eppley shadow band radius */
pdat->sbsky = 0.04; /* Drummond factor for partly cloudy skies */
pdat->function = S_ALL; /* compute all parameters */
}
/*============================================================================
* Local long int function validate
*
* Validates the input parameters
*----------------------------------------------------------------------------*/
static long int validate ( struct posdata *pdat)
{
long int retval = 0; /* start with no errors */
/* No absurd dates, please. */
if ( pdat->function & L_GEOM )
{
if ( (pdat->year < 1950) || (pdat->year > 2050) ) /* limits of algoritm */
retval |= (1L << S_YEAR_ERROR);
if ( !(pdat->function & S_DOY) && ((pdat->month < 1) || (pdat->month > 12)))
retval |= (1L << S_MONTH_ERROR);
if ( !(pdat->function & S_DOY) && ((pdat->day < 1) || (pdat->day > 31)) )
retval |= (1L << S_DAY_ERROR);
if ( (pdat->function & S_DOY) && ((pdat->daynum < 1) || (pdat->daynum > 366)) )
retval |= (1L << S_DOY_ERROR);
/* No absurd times, please. */
if ( (pdat->hour < 0) || (pdat->hour > 24) )
retval |= (1L << S_HOUR_ERROR);
if ( (pdat->minute < 0) || (pdat->minute > 59) )
retval |= (1L << S_MINUTE_ERROR);
if ( (pdat->second < 0) || (pdat->second > 59) )
retval |= (1L << S_SECOND_ERROR);
if ( (pdat->hour == 24) && (pdat->minute > 0) ) /* no more than 24 hrs */
retval |= ( (1L << S_HOUR_ERROR) | (1L << S_MINUTE_ERROR) );
if ( (pdat->hour == 24) && (pdat->second > 0) ) /* no more than 24 hrs */
retval |= ( (1L << S_HOUR_ERROR) | (1L << S_SECOND_ERROR) );
if ( fabs (pdat->timezone) > 12.0 )
retval |= (1L << S_TZONE_ERROR);
if ( (pdat->interval < 0) || (pdat->interval > 28800) )
retval |= (1L << S_INTRVL_ERROR);
/* No absurd locations, please. */
if ( fabs (pdat->longitude) > 180.0 )
retval |= (1L << S_LON_ERROR);
if ( fabs (pdat->latitude) > 90.0 )
retval |= (1L << S_LAT_ERROR);
}
/* No silly temperatures or pressures, please. */
if ( (pdat->function & L_REFRAC) && (fabs (pdat->temp) > 100.0) )
retval |= (1L << S_TEMP_ERROR);
if ( (pdat->function & L_REFRAC) &&
(pdat->press < 0.0) || (pdat->press > 2000.0) )
retval |= (1L << S_PRESS_ERROR);
/* No out of bounds tilts, please */
if ( (pdat->function & L_TILT) && (fabs (pdat->tilt) > 180.0) )
retval |= (1L << S_TILT_ERROR);
if ( (pdat->function & L_TILT) && (fabs (pdat->aspect) > 360.0) )
retval |= (1L << S_ASPECT_ERROR);
/* No oddball shadowbands, please */
if ( (pdat->function & L_SBCF) &&
(pdat->sbwid < 1.0) || (pdat->sbwid > 100.0) )
retval |= (1L << S_SBWID_ERROR);
if ( (pdat->function & L_SBCF) &&
(pdat->sbrad < 1.0) || (pdat->sbrad > 100.0) )
retval |= (1L << S_SBRAD_ERROR);
if ( (pdat->function & L_SBCF) && ( fabs (pdat->sbsky) > 1.0) )
retval |= (1L << S_SBSKY_ERROR);
return retval;
}
/*============================================================================
* Local Void function dom2doy
*
* Converts day-of-month to day-of-year
*
* Requires (from struct posdata parameter):
* year
* month
* day
*
* Returns (via the struct posdata parameter):
* year
* daynum
*----------------------------------------------------------------------------*/
static void dom2doy( struct posdata *pdat )
{
pdat->daynum = pdat->day + month_days[0][pdat->month];
/* (adjust for leap year) */
if ( ((pdat->year % 4) == 0) &&
( ((pdat->year % 100) != 0) || ((pdat->year % 400) == 0) ) &&
(pdat->month > 2) )
pdat->daynum += 1;
}
/*============================================================================
* Local void function doy2dom
*
* This function computes the month/day from the day number.
*
* Requires (from struct posdata parameter):
* Year and day number:
* year
* daynum
*
* Returns (via the struct posdata parameter):
* year
* month
* day
*----------------------------------------------------------------------------*/
static void doy2dom(struct posdata *pdat)
{
int imon; /* Month (month_days) array counter */
int leap; /* leap year switch */
/* Set the leap year switch */
if ( ((pdat->year % 4) == 0) &&
( ((pdat->year % 100) != 0) || ((pdat->year % 400) == 0) ) )
leap = 1;
else
leap = 0;
/* Find the month */
imon = 12;
while ( pdat->daynum <= month_days [leap][imon] )
--imon;
/* Set the month and day of month */
pdat->month = imon;
pdat->day = pdat->daynum - month_days[leap][imon];
}
/*============================================================================
* Local Void function geometry
*
* Does the underlying geometry for a given time and location
*----------------------------------------------------------------------------*/
static void geometry ( struct posdata *pdat )
{
float bottom; /* denominator (bottom) of the fraction */
float c2; /* cosine of d2 */
float cd; /* cosine of the day angle or delination */
float d2; /* pdat->dayang times two */
float delta; /* difference between current year and 1949 */
float s2; /* sine of d2 */
float sd; /* sine of the day angle */
float top; /* numerator (top) of the fraction */
int leap; /* leap year counter */
/* Day angle */
/* Iqbal, M. 1983. An Introduction to Solar Radiation.
Academic Press, NY., page 3 */
pdat->dayang = 360.0 * ( pdat->daynum - 1 ) / 365.0;
/* Earth radius vector * solar constant = solar energy */
/* Spencer, J. W. 1971. Fourier series representation of the
position of the sun. Search 2 (5), page 172 */
sd = sin (raddeg * pdat->dayang);
cd = cos (raddeg * pdat->dayang);
d2 = 2.0 * pdat->dayang;
c2 = cos (raddeg * d2);
s2 = sin (raddeg * d2);
pdat->erv = 1.000110 + 0.034221 * cd + 0.001280 * sd;
pdat->erv += 0.000719 * c2 + 0.000077 * s2;
/* Universal Coordinated (Greenwich standard) time */
/* Michalsky, J. 1988. The Astronomical Almanac's algorithm for
approximate solar position (1950-2050). Solar Energy 40 (3),
pp. 227-235. */
pdat->utime =
pdat->hour * 3600.0 +
pdat->minute * 60.0 +
pdat->second -
(float)pdat->interval / 2.0;
pdat->utime = pdat->utime / 3600.0 - pdat->timezone;
/* Julian Day minus 2,400,000 days (to eliminate roundoff errors) */
/* Michalsky, J. 1988. The Astronomical Almanac's algorithm for
approximate solar position (1950-2050). Solar Energy 40 (3),
pp. 227-235. */
/* No adjustment for century non-leap years since this function is
bounded by 1950 - 2050 */
delta = pdat->year - 1949;
leap = (int) ( delta / 4.0 );
pdat->julday =
32916.5 + delta * 365.0 + leap + pdat->daynum + pdat->utime / 24.0;
/* Time used in the calculation of ecliptic coordinates */
/* Noon 1 JAN 2000 = 2,400,000 + 51,545 days Julian Date */
/* Michalsky, J. 1988. The Astronomical Almanac's algorithm for
approximate solar position (1950-2050). Solar Energy 40 (3),
pp. 227-235. */
pdat->ectime = pdat->julday - 51545.0;
/* Mean longitude */
/* Michalsky, J. 1988. The Astronomical Almanac's algorithm for
approximate solar position (1950-2050). Solar Energy 40 (3),
pp. 227-235. */
pdat->mnlong = 280.460 + 0.9856474 * pdat->ectime;
/* (dump the multiples of 360, so the answer is between 0 and 360) */
pdat->mnlong -= 360.0 * (int) ( pdat->mnlong / 360.0 );
if ( pdat->mnlong < 0.0 )
pdat->mnlong += 360.0;
/* Mean anomaly */
/* Michalsky, J. 1988. The Astronomical Almanac's algorithm for
approximate solar position (1950-2050). Solar Energy 40 (3),
pp. 227-235. */
pdat->mnanom = 357.528 + 0.9856003 * pdat->ectime;
/* (dump the multiples of 360, so the answer is between 0 and 360) */
pdat->mnanom -= 360.0 * (int) ( pdat->mnanom / 360.0 );
if ( pdat->mnanom < 0.0 )
pdat->mnanom += 360.0;
/* Ecliptic longitude */
/* Michalsky, J. 1988. The Astronomical Almanac's algorithm for
approximate solar position (1950-2050). Solar Energy 40 (3),
pp. 227-235. */
pdat->eclong = pdat->mnlong + 1.915 * sin ( pdat->mnanom * raddeg ) +
0.020 * sin ( 2.0 * pdat->mnanom * raddeg );
/* (dump the multiples of 360, so the answer is between 0 and 360) */
pdat->eclong -= 360.0 * (int) ( pdat->eclong / 360.0 );
if ( pdat->eclong < 0.0 )
pdat->eclong += 360.0;
/* Obliquity of the ecliptic */
/* Michalsky, J. 1988. The Astronomical Almanac's algorithm for
approximate solar position (1950-2050). Solar Energy 40 (3),
pp. 227-235. */
/* 02 Feb 2001 SMW corrected sign in the following line */
/* pdat->ecobli = 23.439 + 4.0e-07 * pdat->ectime; */
pdat->ecobli = 23.439 - 4.0e-07 * pdat->ectime;
/* Declination */
/* Michalsky, J. 1988. The Astronomical Almanac's algorithm for
approximate solar position (1950-2050). Solar Energy 40 (3),
pp. 227-235. */
pdat->declin = degrad * asin ( sin (pdat->ecobli * raddeg) *
sin (pdat->eclong * raddeg) );
/* Right ascension */
/* Michalsky, J. 1988. The Astronomical Almanac's algorithm for
approximate solar position (1950-2050). Solar Energy 40 (3),
pp. 227-235. */
top = cos ( raddeg * pdat->ecobli ) * sin ( raddeg * pdat->eclong );
bottom = cos ( raddeg * pdat->eclong );
pdat->rascen = degrad * atan2 ( top, bottom );
/* (make it a positive angle) */
if ( pdat->rascen < 0.0 )
pdat->rascen += 360.0;
/* Greenwich mean sidereal time */
/* Michalsky, J. 1988. The Astronomical Almanac's algorithm for
approximate solar position (1950-2050). Solar Energy 40 (3),
pp. 227-235. */
pdat->gmst = 6.697375 + 0.0657098242 * pdat->ectime + pdat->utime;
/* (dump the multiples of 24, so the answer is between 0 and 24) */
pdat->gmst -= 24.0 * (int) ( pdat->gmst / 24.0 );
if ( pdat->gmst < 0.0 )
pdat->gmst += 24.0;
/* Local mean sidereal time */
/* Michalsky, J. 1988. The Astronomical Almanac's algorithm for
approximate solar position (1950-2050). Solar Energy 40 (3),
pp. 227-235. */
pdat->lmst = pdat->gmst * 15.0 + pdat->longitude;
/* (dump the multiples of 360, so the answer is between 0 and 360) */
pdat->lmst -= 360.0 * (int) ( pdat->lmst / 360.0 );
if ( pdat->lmst < 0.)
pdat->lmst += 360.0;
/* Hour angle */
/* Michalsky, J. 1988. The Astronomical Almanac's algorithm for
approximate solar position (1950-2050). Solar Energy 40 (3),
pp. 227-235. */
pdat->hrang = pdat->lmst - pdat->rascen;
/* (force it between -180 and 180 degrees) */
if ( pdat->hrang < -180.0 )
pdat->hrang += 360.0;
else if ( pdat->hrang > 180.0 )
pdat->hrang -= 360.0;
}
/*============================================================================
* Local Void function zen_no_ref
*
* ETR solar zenith angle
* Iqbal, M. 1983. An Introduction to Solar Radiation.
* Academic Press, NY., page 15
*----------------------------------------------------------------------------*/
static void zen_no_ref ( struct posdata *pdat, struct trigdata *tdat )
{
float cz; /* cosine of the solar zenith angle */
localtrig( pdat, tdat );
cz = tdat->sd * tdat->sl + tdat->cd * tdat->cl * tdat->ch;
/* (watch out for the roundoff errors) */
if ( fabs (cz) > 1.0 ) {
if ( cz >= 0.0 )
cz = 1.0;
else
cz = -1.0;
}
pdat->zenetr = acos ( cz ) * degrad;
/* (limit the degrees below the horizon to 9 [+90 -> 99]) */
if ( pdat->zenetr > 99.0 )
pdat->zenetr = 99.0;
pdat->elevetr = 90.0 - pdat->zenetr;
}
/*============================================================================
* Local Void function ssha
*
* Sunset hour angle, degrees
* Iqbal, M. 1983. An Introduction to Solar Radiation.
* Academic Press, NY., page 16
*----------------------------------------------------------------------------*/
static void ssha( struct posdata *pdat, struct trigdata *tdat )
{
float cssha; /* cosine of the sunset hour angle */
float cdcl; /* ( cd * cl ) */
localtrig( pdat, tdat );
cdcl = tdat->cd * tdat->cl;
if ( fabs ( cdcl ) >= 0.001 ) {
cssha = -tdat->sl * tdat->sd / cdcl;
/* This keeps the cosine from blowing on roundoff */
if ( cssha < -1.0 )
pdat->ssha = 180.0;
else if ( cssha > 1.0 )
pdat->ssha = 0.0;
else
pdat->ssha = degrad * acos ( cssha );
}
else if ( ((pdat->declin >= 0.0) && (pdat->latitude > 0.0 )) ||
((pdat->declin < 0.0) && (pdat->latitude < 0.0 )) )
pdat->ssha = 180.0;
else
pdat->ssha = 0.0;
}
/*============================================================================
* Local Void function sbcf
*
* Shadowband correction factor
* Drummond, A. J. 1956. A contribution to absolute pyrheliometry.
* Q. J. R. Meteorol. Soc. 82, pp. 481-493
*----------------------------------------------------------------------------*/
static void sbcf( struct posdata *pdat, struct trigdata *tdat )
{
float p, t1, t2; /* used to compute sbcf */
localtrig( pdat, tdat );
p = 0.6366198 * pdat->sbwid / pdat->sbrad * pow (tdat->cd,3);
t1 = tdat->sl * tdat->sd * pdat->ssha * raddeg;
t2 = tdat->cl * tdat->cd * sin ( pdat->ssha * raddeg );
pdat->sbcf = pdat->sbsky + 1.0 / ( 1.0 - p * ( t1 + t2 ) );
}
/*============================================================================
* Local Void function tst
*
* TST -> True Solar Time = local standard time + TSTfix, time
* in minutes from midnight.
* Iqbal, M. 1983. An Introduction to Solar Radiation.
* Academic Press, NY., page 13
*----------------------------------------------------------------------------*/
static void tst( struct posdata *pdat )
{
pdat->tst = ( 180.0 + pdat->hrang ) * 4.0;
pdat->tstfix =
pdat->tst -
(float)pdat->hour * 60.0 -
pdat->minute -
(float)pdat->second / 60.0 +
(float)pdat->interval / 120.0; /* add back half of the interval */
/* bound tstfix to this day */
while ( pdat->tstfix > 720.0 )
pdat->tstfix -= 1440.0;
while ( pdat->tstfix < -720.0 )
pdat->tstfix += 1440.0;
pdat->eqntim =
pdat->tstfix + 60.0 * pdat->timezone - 4.0 * pdat->longitude;
}
/*============================================================================
* Local Void function srss
*
* Sunrise and sunset times (minutes from midnight)
*----------------------------------------------------------------------------*/
static void srss( struct posdata *pdat )
{
if ( pdat->ssha <= 1.0 ) {
pdat->sretr = 2999.0;
pdat->ssetr = -2999.0;
}
else if ( pdat->ssha >= 179.0 ) {
pdat->sretr = -2999.0;
pdat->ssetr = 2999.0;
}
else {
pdat->sretr = 720.0 - 4.0 * pdat->ssha - pdat->tstfix;
pdat->ssetr = 720.0 + 4.0 * pdat->ssha - pdat->tstfix;
}
}
/*============================================================================
* Local Void function sazm
*
* Solar azimuth angle
* Iqbal, M. 1983. An Introduction to Solar Radiation.
* Academic Press, NY., page 15
*----------------------------------------------------------------------------*/
static void sazm( struct posdata *pdat, struct trigdata *tdat )
{
float ca; /* cosine of the solar azimuth angle */
float ce; /* cosine of the solar elevation */
float cecl; /* ( ce * cl ) */
float se; /* sine of the solar elevation */
localtrig( pdat, tdat );
ce = cos ( raddeg * pdat->elevetr );
se = sin ( raddeg * pdat->elevetr );
pdat->azim = 180.0;
cecl = ce * tdat->cl;
if ( fabs ( cecl ) >= 0.001 ) {
ca = ( se * tdat->sl - tdat->sd ) / cecl;
if ( ca > 1.0 )
ca = 1.0;
else if ( ca < -1.0 )
ca = -1.0;
pdat->azim = 180.0 - acos ( ca ) * degrad;
if ( pdat->hrang > 0 )
pdat->azim = 360.0 - pdat->azim;
}
}
/*============================================================================
* Local Int function refrac
*
* Refraction correction, degrees
* Zimmerman, John C. 1981. Sun-pointing programs and their
* accuracy.
* SAND81-0761, Experimental Systems Operation Division 4721,
* Sandia National Laboratories, Albuquerque, NM.
*----------------------------------------------------------------------------*/
static void refrac( struct posdata *pdat )
{
float prestemp; /* temporary pressure/temperature correction */
float refcor; /* temporary refraction correction */
float tanelev; /* tangent of the solar elevation angle */
/* If the sun is near zenith, the algorithm bombs; refraction near 0 */
if ( pdat->elevetr > 85.0 )
refcor = 0.0;
/* Otherwise, we have refraction */
else {
tanelev = tan ( raddeg * pdat->elevetr );
if ( pdat->elevetr >= 5.0 )
refcor = 58.1 / tanelev -
0.07 / ( pow (tanelev,3) ) +
0.000086 / ( pow (tanelev,5) );
else if ( pdat->elevetr >= -0.575 )
refcor = 1735.0 +
pdat->elevetr * ( -518.2 + pdat->elevetr * ( 103.4 +
pdat->elevetr * ( -12.79 + pdat->elevetr * 0.711 ) ) );
else
refcor = -20.774 / tanelev;
prestemp =
( pdat->press * 283.0 ) / ( 1013.0 * ( 273.0 + pdat->temp ) );
refcor *= prestemp / 3600.0;
}
/* Refracted solar elevation angle */
pdat->elevref = pdat->elevetr + refcor;
/* (limit the degrees below the horizon to 9) */
if ( pdat->elevref < -9.0 )
pdat->elevref = -9.0;
/* Refracted solar zenith angle */
pdat->zenref = 90.0 - pdat->elevref;
pdat->coszen = cos( raddeg * pdat->zenref );
}
/*============================================================================
* Local Void function amass
*
* Airmass
* Kasten, F. and Young, A. 1989. Revised optical air mass
* tables and approximation formula. Applied Optics 28 (22),
* pp. 4735-4738
*----------------------------------------------------------------------------*/
static void amass( struct posdata *pdat )
{
if ( pdat->zenref > 93.0 )
{
pdat->amass = -1.0;
pdat->ampress = -1.0;
}
else
{
pdat->amass =
1.0 / ( cos (raddeg * pdat->zenref) + 0.50572 *
pow ((96.07995 - pdat->zenref),-1.6364) );
pdat->ampress = pdat->amass * pdat->press / 1013.0;
}
}
/*============================================================================
* Local Void function prime
*
* Prime and Unprime
* Prime converts Kt to normalized Kt', etc.
* Unprime deconverts Kt' to Kt, etc.
* Perez, R., P. Ineichen, Seals, R., & Zelenka, A. 1990. Making
* full use of the clearness index for parameterizing hourly
* insolation conditions. Solar Energy 45 (2), pp. 111-114
*----------------------------------------------------------------------------*/
static void prime( struct posdata *pdat )
{
pdat->unprime = 1.031 * exp ( -1.4 / ( 0.9 + 9.4 / pdat->amass ) ) + 0.1;
pdat->prime = 1.0 / pdat->unprime;
}
/*============================================================================
* Local Void function etr
*
* Extraterrestrial (top-of-atmosphere) solar irradiance
*----------------------------------------------------------------------------*/
static void etr( struct posdata *pdat )
{
if ( pdat->coszen > 0.0 ) {
pdat->etrn = pdat->solcon * pdat->erv;
pdat->etr = pdat->etrn * pdat->coszen;
}
else {
pdat->etrn = 0.0;
pdat->etr = 0.0;
}
}
/*============================================================================
* Local Void function localtrig
*
* Does trig on internal variable used by several functions
*----------------------------------------------------------------------------*/
static void localtrig( struct posdata *pdat, struct trigdata *tdat )
{
/* define masks to prevent calculation of uninitialized variables */
#define SD_MASK ( L_ZENETR | L_SSHA | S_SBCF | S_SOLAZM )
#define SL_MASK ( L_ZENETR | L_SSHA | S_SBCF | S_SOLAZM )
#define CL_MASK ( L_ZENETR | L_SSHA | S_SBCF | S_SOLAZM )
#define CD_MASK ( L_ZENETR | L_SSHA | S_SBCF )
#define CH_MASK ( L_ZENETR )
if ( tdat->sd < -900.0 ) /* sd was initialized -999 as flag */
{
tdat->sd = 1.0; /* reflag as having completed calculations */
if ( pdat->function | CD_MASK )
tdat->cd = cos ( raddeg * pdat->declin );
if ( pdat->function | CH_MASK )
tdat->ch = cos ( raddeg * pdat->hrang );
if ( pdat->function | CL_MASK )
tdat->cl = cos ( raddeg * pdat->latitude );
if ( pdat->function | SD_MASK )
tdat->sd = sin ( raddeg * pdat->declin );
if ( pdat->function | SL_MASK )
tdat->sl = sin ( raddeg * pdat->latitude );
}
}
/*============================================================================
* Local Void function tilt
*
* ETR on a tilted surface
*----------------------------------------------------------------------------*/
static void tilt( struct posdata *pdat )
{
float ca; /* cosine of the solar azimuth angle */
float cp; /* cosine of the panel aspect */
float ct; /* cosine of the panel tilt */
float sa; /* sine of the solar azimuth angle */
float sp; /* sine of the panel aspect */
float st; /* sine of the panel tilt */
float sz; /* sine of the refraction corrected solar zenith angle */
/* Cosine of the angle between the sun and a tipped flat surface,
useful for calculating solar energy on tilted surfaces */
ca = cos ( raddeg * pdat->azim );
cp = cos ( raddeg * pdat->aspect );
ct = cos ( raddeg * pdat->tilt );
sa = sin ( raddeg * pdat->azim );
sp = sin ( raddeg * pdat->aspect );
st = sin ( raddeg * pdat->tilt );
sz = sin ( raddeg * pdat->zenref );
pdat->cosinc = pdat->coszen * ct + sz * st * ( ca * cp + sa * sp );
if ( pdat->cosinc > 0.0 )
pdat->etrtilt = pdat->etrn * pdat->cosinc;
else
pdat->etrtilt = 0.0;
}
/*============================================================================
* Void function S_decode
*
* This function decodes the error codes from S_solpos return value
*
* Requires the long integer return value from S_solpos
*
* Returns descriptive text to stderr
*----------------------------------------------------------------------------*/
void S_decode(long code, struct posdata *pdat)
{
if ( code & (1L << S_YEAR_ERROR) )
fprintf(stderr, "S_decode ==> Please fix the year: %d [1950-2050]\n",
pdat->year);
if ( code & (1L << S_MONTH_ERROR) )
fprintf(stderr, "S_decode ==> Please fix the month: %d\n",
pdat->month);
if ( code & (1L << S_DAY_ERROR) )
fprintf(stderr, "S_decode ==> Please fix the day-of-month: %d\n",
pdat->day);
if ( code & (1L << S_DOY_ERROR) )
fprintf(stderr, "S_decode ==> Please fix the day-of-year: %d\n",
pdat->daynum);
if ( code & (1L << S_HOUR_ERROR) )
fprintf(stderr, "S_decode ==> Please fix the hour: %d\n",
pdat->hour);
if ( code & (1L << S_MINUTE_ERROR) )
fprintf(stderr, "S_decode ==> Please fix the minute: %d\n",
pdat->minute);
if ( code & (1L << S_SECOND_ERROR) )
fprintf(stderr, "S_decode ==> Please fix the second: %d\n",
pdat->second);
if ( code & (1L << S_TZONE_ERROR) )
fprintf(stderr, "S_decode ==> Please fix the time zone: %f\n",
pdat->timezone);
if ( code & (1L << S_INTRVL_ERROR) )
fprintf(stderr, "S_decode ==> Please fix the interval: %d\n",
pdat->interval);
if ( code & (1L << S_LAT_ERROR) )
fprintf(stderr, "S_decode ==> Please fix the latitude: %f\n",
pdat->latitude);
if ( code & (1L << S_LON_ERROR) )
fprintf(stderr, "S_decode ==> Please fix the longitude: %f\n",
pdat->longitude);
if ( code & (1L << S_TEMP_ERROR) )
fprintf(stderr, "S_decode ==> Please fix the temperature: %f\n",
pdat->temp);
if ( code & (1L << S_PRESS_ERROR) )
fprintf(stderr, "S_decode ==> Please fix the pressure: %f\n",
pdat->press);
if ( code & (1L << S_TILT_ERROR) )
fprintf(stderr, "S_decode ==> Please fix the tilt: %f\n",
pdat->tilt);
if ( code & (1L << S_ASPECT_ERROR) )
fprintf(stderr, "S_decode ==> Please fix the aspect: %f\n",
pdat->aspect);
if ( code & (1L << S_SBWID_ERROR) )
fprintf(stderr, "S_decode ==> Please fix the shadowband width: %f\n",
pdat->sbwid);
if ( code & (1L << S_SBRAD_ERROR) )
fprintf(stderr, "S_decode ==> Please fix the shadowband radius: %f\n",
pdat->sbrad);
if ( code & (1L << S_SBSKY_ERROR) )
fprintf(stderr, "S_decode ==> Please fix the shadowband sky factor: %f\n",
pdat->sbsky);
}
|