1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
|
{-
Kaya - My favourite toy language.
Copyright (C) 2004, 2005 Edwin Brady
This file is distributed under the terms of the GNU General
Public Licence. See COPYING for licence.
-}
module Inference where
-- Type inference algorithm
import Options
import Language
import InfGadgets
import VarUsage
import PMComp
import Module
import Debug.Trace
import List
import Control.Monad
-- Step one : insert type declarations (with UnknownType) so that at least
-- we know what all the variables are.
mkpub (x,y) = (x,(y,[Public]))
mkCtxtEntry opts (x,y) = (x,(y,opts))
insertdecl :: Name -> -- Module
EContext ->
GContext -> Context -> Raw -> Raw
-- Make sure we insert *below* the top level lambda, or we'll have problems.
insertdecl mod excs globs ctxt (RLambda str l tvs ns exp) =
(RLambda str l tvs ns (insertdecl mod excs globs
(addNames ctxt (map mkpub ns)) exp))
insertdecl mod excs globs ctxt t =
declare (nubBy cmpnames (gu False ((getNames ctxt)++(map fst globs)) t)) t
-- Pass through list of vars declared
where
cmpnames (_,_,x) (_,_,y) = x==y
gu mtch ds (RVar str l n) = checkdecl mtch (str,l,n) ds []
gu mtch ds (RQVar str l n) = checkdecl mtch (str,l,n) ds []
gu mtch ds (RLambda str l tvs ns exp) =
gu mtch (ds++(map fst ns)) exp
gu mtch ds (RClosure str l ns exp) =
gu mtch (ds++(map fst ns)) exp
gu mtch ds (RDeclare str l (n,loc) ty exp) =
gu mtch (n:ds) exp
gu mtch ds (RBind str l n ty val exp) =
{- gu mtch ds val ++ -} gu mtch (n:ds) exp
-- We want to check the rhs of an assignment, but not if it's a name.
-- We look because we might find a case statement or some kind of embedded
-- sequence with an assignment. We eliminate names at first because we don't
-- want a declaration inserted if this is the only place they are referred
-- to!
gu mtch ds (RAssign str l lval (RVar _ _ _))
= checkdecl mtch (getlv lval) ds [] --(gu mtch ds exp)
gu mtch ds (RAssign str l lval (RQVar _ _ _))
= checkdecl mtch (getlv lval) ds [] --(gu mtch ds exp)
gu mtch ds (RAssign str l lval exp) = checkdecl mtch (getlv lval) ds (gu mtch ds exp)
gu mtch ds (RAssignOp str l op lval exp) =
checkdecl mtch (getlv lval) ds [] --(gu mtch ds exp)
gu mtch ds (RSeq str l lseq rseq) =
gu mtch ds lseq ++ gu mtch ds rseq
gu mtch ds (RReturn _ _ (RCase str l v exps))
= {-gu mtch ds v ++ -} (concat (map (gua mtch ds) exps))
-- if we're returning something complicated (like a for loop generated
-- from a list comprehension, we'd better look for variables assigned
-- inside it.
gu mtch ds (RReturn _ _ a@(RSeq _ _ _ _)) = gu mtch ds a
gu mtch ds (RReturn str l a) = []
gu mtch ds (RApply str l fn args) =
-- Names in applications must be declared or used already, except
-- in match patterns, and except if the arguments are closures.
-- (i.e. it's an argument which may cause assignment to happen)
if mtch then (concat (map (gu True ds) args))
else (concat (map (gcu ds) args))
where gcu ds rc@(RClosure _ _ _ _) = gu mtch ds rc
gcu _ _ = []
gu mtch ds (RPartial str l fn args) = []
-- Names in applications must be declared or used already.
--checkdecl mtch fn ds (concat (map (gu mtch ds) args))
gu mtch ds (RForeign str l ty fn args) = []
-- Names in applications must be declared or used already.
--checkdecl mtch fn ds (concat (map (gu mtch ds) args))
--concat (map (gu mtch ds) args)
gu mtch ds (RWhile str l c body) =
{-gu mtch ds c ++ -} gu mtch ds body
gu mtch ds (RDoWhile str l body c) =
{-gu mtch ds c ++ -} gu mtch ds body
gu mtch ds (RFor str l lval nm (RVar _ _ _) body) =
checkdecl mtch (getlv lval) ds (gu mtch ds body)
gu mtch ds (RFor str l lval nm t body) =
checkdecl mtch (getlv lval) ds (gu mtch ds body ++ gu mtch ds t)
-- gu mtch ds (RFor str l lval (Just nm) t body) =
-- checkdecl mtch (str,l,nm) ds $ checkdecl mtch (getlv lval) ds (gu mtch ds body)
gu mtch ds (RTryCatch str l tr ca x fin) =
checkdecl mtch (str,l,x) ds ((gu mtch ds tr) ++ (gu mtch ds ca) ++ (gu mtch ds fin))
gu mtch ds (RNewTryCatch str l tblock cs) =
gu mtch ds tblock ++ (concat (map (gue mtch ds) cs))
gu mtch ds (RThrow str l a) = []
gu mtch ds (RExcept str l a b) = []
gu mtch ds (RPrint str l v) = [] --gu mtch ds v
gu mtch ds (RInfix str l op x y) = [] -- gu mtch ds x ++ gu mtch ds y
gu mtch ds (RUnary str l op v) = [] -- gu mtch ds v
gu mtch ds (RCoerce str l t v) = [] --gu mtch ds v
gu mtch ds (RCase str l v exps) = {-gu mtch ds v ++ -}
(concat (map (gua mtch ds) exps))
gu mtch ds (RMatch str l v exps) = {-gu mtch ds v ++ -}
(concat (map (guma ds) exps))
gu mtch ds (RIf str l c t f) = {-gu mtch ds c ++ -}
gu mtch ds t ++ gu mtch ds f
gu mtch ds (RIndex str l x y) = [] -- gu mtch ds x ++ gu mtch ds y
gu mtch ds (RArrayInit str l xs) =
-- Names in array initialisation must be declared or used already,
-- except in match patterns
if mtch then (concat (map (gu True ds) xs))
else []
gu mtch ds x = []
-- Look for variables used in case branches
gua mtch ds (RAlt str l f as exp) = (cd mtch str l as ds) ++ (gu mtch ds exp)
gua mtch ds (RArrayAlt str l as exp) = (cd mtch str l as ds) ++ (gu mtch ds exp)
gua mtch ds (RConstAlt str l c exp) = gu mtch ds exp
gua mtch ds (RDefault str l exp) = gu mtch ds exp
guma ds (MAlt str l ps exp)
= (concat (map (gu True ds) ps)) ++ (gu False ds exp)
-- Look for variables used in catch clauses
gue mtch ds (RCatch str l (Left (ex,as)) exp) = (cd mtch str l as ds) ++ (gu mtch ds exp)
-- only insert the declaration if 'v' isn't a global name
gue mtch ds (RCatch str l (Right v) exp)
= case lookupname mod v excs of
[] -> checkdecl mtch (str,l,v) ds (gu mtch ds exp)
_ -> gue mtch ds (RCatch str l (Left (v,[])) exp)
-- Check for whether each in a list of vars has been declared
-- Return those which need declarations inserted
cd mtch str l [] ds = []
cd mtch str l (x:xs) ds = checkdecl mtch (str,l,x) ds (cd mtch str l xs ds)
-- Add a declaration if we come across a variable that hasn't been declared.
-- If we're in a match pattern, also check whether the name is in global
-- scope.
checkdecl mtch (f,l,var) ds rest
= case (var `elem` ds, mtch, lookupname mod var ctxt) of
-- in local scope, do nothing
(True, _, _) -> rest
-- in global scope, and we're in a match
(_, True, xs) -> if (all nonConstructor xs) then (f,l,var):rest
else rest
-- not in local scope, so add it (don't care about global scope)
(False, _, _) -> (f,l,var):rest
nonConstructor (n,(ty,opts)) = not (Constructor `elem` opts)
getlv (RAName str l x) = (str,l,x)
getlv (RAIndex str l lv t) = getlv lv
getlv (RAField str l lv n) = getlv lv
declare :: [(String,Int,Name)] -> Raw -> Raw
declare [] t = t
declare ((str,l,x):xs) t = RDeclare str l (x,False) UnknownType (declare xs t)
-- Now do type inference/checking. If there's a declaration, work out the
-- type declared.
-- Step two: Create a list of type equations to solve.
{- We record equations as a list of the equations we initially made (so
they can be dumped for debugging) and build a substitution as we go (for
the sake of efficiency; we don't want to have to rebuild it) -}
type Equation = ([(Type, Type, String, Int, String)], Subst)
ideq = ([],id_subst)
infer mod ctxt globs excs tags tys fld t ftyp copts =
infertype mod ctxt globs excs tags tys fld t ftyp (Prim Void) copts
infertype :: MonadPlus m =>
Name -> -- Module name
Context -> -- Global definitions
GContext -> -- Global variables
EContext -> -- Exception types
Tags -> -- Constructor tags
Types -> -- Type information
Fields -> -- Field names
Raw -> -- Term to check
Type -> -- Expected return type (for a function)
Type -> -- Expected value type
Options -> -- Compiler options
m (Expr Name, Equation) -- Well typed term, substitution
infertype mod ctxt globs excs tags tys flds t ftype vtype copts = do
(exp',eqn,_) <- ti [] 0 t ideq vtype mkrexp
return (exp',eqn)
where
mkrexp = case ftype of
(Fn _ _ UnknownType) -> TyVar (MN ("rettype", 0))
_ -> getrtype (appsyn tys ftype)
getrtype (Fn _ _ ret) = ret
tiVar env next (RVar file line n) eqns exp disambig rexp =
-- reverse the environment to get most recent binding first.
case (lookup n (reverse env)) of
Nothing -> findfun n
(Just t) -> do let (nt, next') = (t,next) -- fudgevars t next -- NO! Only generalise type variables for global functions!
let (realt, realn) = isapply nt (Global n "" (argSpace t))
neweqn <- addEq file line (realt,exp,"identifier '" ++ showuser n++"'") eqns
return (realn, neweqn, next')
where findfun n
= case (ctxtlookup mod n ctxt disambig copts) of
-- TMP HACK!
(Failure err f l) -> if take 4 err == "Ambi" || take 4 err == "Can'"
then fail $ file++":"++show line ++ ":" ++err
else findglob n
(Success (rn,t)) -> do let (nt, next') = fudgevars t next
let (realt, realn) = isapply nt (Global rn (mangling t) (argSpace t))
neweqn <- addEq file line (realt,exp,"identifier '" ++ showuser n ++ "'") eqns
return (realn, neweqn, next')
findglob n
= case lookup n globs of
Nothing -> fail $ tyerror file line ("Unknown name:" ++ showuser n ++ "\n")-- ++ ctxtdump ctxt)
(Just (t,i)) -> do
neweqn <- addEq file line (t,exp,"identifier '" ++ showuser n ++ "'") eqns
return (GVar i, neweqn, next)
isapply t@(Fn [] [] ty) f = (ty,Annotation (Line file line) (Apply f []))
isapply t f = (t,f)
tiVar env next (RQVar file line n) eqns exp disambig rexp =
-- reverse the environment to get most recent binding first.
-- trace ("*** trying " ++ (show n) ++ " : " ++ (show exp)) $
case (lookup n (reverse env)) of
Nothing -> findfun n
(Just t) -> do let (nt, next') = (t,next) -- fudgevars t next
neweqn <- addEq file line (nt,exp,"identifier '" ++ showuser n ++ "'") eqns
return (Global n "" (argSpace t), neweqn, next')
where findfun n = case (ctxtlookup mod n ctxt disambig copts) of
-- TMP HACK!
(Failure err f l) -> if take 4 err == "Ambi" || take 4 err == "Can'"
then fail $ file++":"++show line++ ":" ++err
else findglob n
(Success (rn,t)) -> do let (nt, next') = fudgevars t next
neweqn <- addEq file line (nt,exp,"identifier '" ++ showuser n ++ "'") eqns
return (Global rn (mangling t) (argSpace t), neweqn, next')
findglob n
= case lookup n globs of
Nothing -> fail $ tyerror file line ("Unknown name:" ++ showuser n ++ "\n")-- ++ ctxtdump ctxt)
(Just (t,i)) -> do
neweqn <- addEq file line (t,exp,"identifier '" ++ showuser n ++ "'") eqns
return (GVar i, neweqn, next)
tiVar env next e eqns exp disambig rexp = ti env next e eqns exp rexp
ti env next v@(RVar file line n) eqns exp rexp =
tiVar env next v eqns exp Nothing rexp
ti env next v@(RQVar file line n) eqns exp rexp =
tiVar env next v eqns exp Nothing rexp
ti env next (RConst file line c) eqns exp rexp = do
let (cv,ct) = tcConst c
eqn' <- addEq file line (ct,exp,"constant " ++ show c) eqns
return (cv, eqn', next)
ti env next (RLambda file line isvars ns body) eqns exp rexp = do
ns' <- mapM (normalisectx file line mod tys) ns
(bcheck,beqns,next') <- ti (env++(map (synctx tys) ns')) next body eqns (Prim Void) rexp
let vbody = pToV (map mkpub ns') bcheck
return (Lambda isvars ns' vbody, beqns, next')
ti env next (RClosure file line ns body) eqns exp rexp = do
(tns,next') <- inserttvs ns next
ns' <- mapM (normalisectx file line mod tys) tns
let newrexp = TyVar (MN ("CLOSRET",next'))
let closenv = (env++(map (synctx tys) ns'))
(bcheck,beqns,next'') <- {-trace (show closenv) $-} ti closenv (next'+1) body eqns (Prim Void) newrexp
let vbody = pToV (map mkpub closenv) bcheck
let clostype = Fn [] (map snd ns') newrexp
ceqns <- addEq file line (clostype,exp,"closure") beqns
-- phi <- mkSubst ceqns
-- checkReturn file line "lambda" (subst phi clostype) vbody
-- use annotation for return checking
return (Annotation (Line file line) (Closure ns' newrexp vbody),
ceqns, next'')
where inserttvs [] next = return ([],next)
inserttvs ((n,UnknownType):xs) next = do
(xs',next') <- inserttvs xs next
let newtv = TyVar (MN ("CLOS",next'))
return ((n,newtv):xs',next'+1)
inserttvs (x:xs) next = do
(xs',next') <- inserttvs xs next
return ((x:xs'),next')
ti env next (RBind file line n t v sc) eqns exp rexp = do
let syntin = appsyn tys t
synt <- normalise False file line mod tys syntin
let newenv = env ++ [(n,synt)]
(vinf,veqns,next') <- ti env (next+1) v eqns synt rexp
(scinf,sceqns,next'') <- ti newenv next' sc veqns exp rexp
let vsc = pToV (map mkpub newenv) scinf
return (Bind n synt vinf vsc, sceqns, next'')
ti env next (RDeclare file line (n,loc) UnknownType sc) eqns exp rexp = do
let newtv = TyVar (MN ("TYPE",next))
let newenv = env ++ [(n,newtv)]
(scinf,sceqns,next') <- ti newenv (next+1) sc eqns exp rexp
let vsc = pToV (map mkpub newenv) scinf
let used = isUsed (length env) vsc
return (Declare file line (n, not used) newtv vsc, sceqns, next')
ti env next (RDeclare file line (n,loc) t sc) eqns exp rexp = do
-- let newtv = TyVar (MN ("TYPE",next))
let synt = appsyn tys t
let newenv = env ++ [(n,synt)]
(scinf,sceqns,next') <- ti newenv (next+1) sc eqns exp rexp
let vsc = pToV (map mkpub newenv) scinf
let used = isUsed (length env) vsc
return (Declare file line (n, not used) synt vsc, sceqns, next')
ti env next (RReturn file line v) eqns exp rexp = do
(vinf, veqns, next') <- ti env next v eqns rexp rexp
neweqns <- addEq file line (Prim Void, exp, "return") veqns
return (Return vinf, neweqns, next')
ti env next (RAssign file line l v) eqns exp rexp = do
(lcheck,lt,leqns,next') <- tclval env next l eqns rexp
(vinf,veqns,next'') <- ti env next' v leqns lt rexp
neweqns <- addEq file line (Prim Void,exp, "assignment") veqns
return (Annotation (Line file line) (Assign lcheck vinf), neweqns, next'')
ti env next (RAssignOp file line op l v) eqns exp rexp = do
(lcheck,lt,leqns,next') <- tclval env next l eqns rexp
(vinf,veqns,next'') <- ti env next' v leqns lt rexp
neweqns <- addEq file line (Prim Void,exp, "assignment") veqns
return (AssignOp op lcheck vinf, neweqns, next'')
ti env next (RSeq file line a b) eqns exp rexp= do
(ainf, aeqns, next') <- ti env next a eqns (Prim Void) rexp
(binf, beqns, next'') <- ti env next' b aeqns exp rexp
return (Seq ainf binf, beqns, next'')
ti env next (RApply file line f args) eqns exp rexp = do
let newtv = TyVar (MN ("TYPE",next))
-- Try checking f with expected type newtv(pre_atypes); if
-- checking it with any old expected type doesn't work.
(finf,feqns,next') <- mplus
(ti env (next+1) f eqns newtv rexp)
(do -- need args to help us disambiguate f
let (pre_atypesin, next') = mkatypes args (next+1)
(_, pre_aeqns, next'') <- checkargs args pre_atypesin eqns next'
phi <- mkSubst pre_aeqns
let calledFnType = Fn [] (map (subst phi) pre_atypesin) newtv
tiVar env next'' f eqns newtv (Just calledFnType) rexp)
phi <- mkSubst feqns
let ftype = subst phi newtv
let (Fn defs argtypes _) = ftype
let fcheck = needsCheck ftype
-- Change the application so that default args are added
let args' = insertdefaults args ftype
let (atypes, next'') = mkatypes args' next'
let reqtype = Fn [] atypes exp
neweqns <- addEq file line (ftype, reqtype, "application" ++ showraw f) feqns
--let atypes' = map (subst phi) atypes
(achecks, aeqns, next'') <- checkargs args' atypes neweqns next''
-- (finf,feqns,next'') <- ti env next' (RQVar file line f) aeqns reqtype
let app = case fcheck of
False -> (Apply finf achecks)
True -> Annotation (DynCheck exp)
(Apply finf achecks)
-- neweqns <- addEq file line (reqtype, ftype) aeqns
return (Annotation (Line file line) app, aeqns, next'')
where mkatypes :: [Raw] -> Int -> ([Type],Int)
mkatypes [] next = ([],next)
mkatypes (x:xs) next =
let (xs', next') = mkatypes xs next in
((TyVar (MN ("TYPE", next')):xs'), next'+1)
checkargs [] [] eqns next = return ([],eqns,next)
checkargs (a:as) (at:ats) eqns next = do
(achecks, aeqns,next') <- checkargs as ats eqns next
phi <- mkSubst aeqns
let phi_at = subst phi at --TyVar (MN ("TYPE",next'))
(ainf,aeqns',next'') <- tiVar env (next'+1) a aeqns phi_at (Just phi_at) rexp
return (ainf:achecks,aeqns',next'')
-- ECB: This is awful. I only *think* I know how it works...
ti env next (RPartial file line f args) eqns exp rexp = do
let (atypes, next') = mkatypes args next
(achecks, aeqns, next') <- checkargs args atypes eqns next'
let newtv = TyVar (MN ("TYPE",next'))
phi_pre <- mkSubst aeqns
let calledFnType = Fn [] (map (subst phi_pre) atypes) newtv
(finf,feqns,next'') <- mplus
-- Do it in this order to get better error messages. If the program
-- is type correct, the first one will always work.
(tiVar env (next'+1) f aeqns newtv (Just calledFnType) rexp)
(ti env (next'+1) f aeqns newtv rexp)
phi <- mkSubst feqns
-- Replace f's real arg types with atype, to get equations right
let (ftype,numleft) = insertatypes atypes (subst phi newtv)
-- Work out the type of the whole partial application
reqtype <- mangleType atypes ftype
eqns' <- addEq file line (reqtype,exp, "partial application" ++ showraw f) feqns
eqns'' <- addEq file line (newtv,ftype, "partial application" ++ showraw f) eqns'
-- (finf,feqns,next'') <- ti env next' (RQVar file line f) aeqns reqtype
return (Partial False finf achecks numleft, eqns'', next'')
where mkatypes :: [Raw] -> Int -> ([Type],Int)
mkatypes [] next = ([],next)
mkatypes (x:xs) next =
let (xs', next') = mkatypes xs next in
((TyVar (MN ("TYPE", next')):xs'), next'+1)
checkargs [] [] eqns next = return ([],eqns,next)
checkargs (a:as) (at:ats) eqns next = do
(achecks,aeqns,next') <- checkargs as ats eqns next
phi <- mkSubst aeqns
let phi_at = subst phi at --TyVar (MN ("TYPE",next'))
(ainf,aeqns',next'') <- tiVar env (next'+1) a aeqns phi_at (Just phi_at) rexp
return (ainf:achecks,aeqns',next'')
mangleType atypes (Fn defs args ret)
= do (newdefs, newargs) <- remove atypes defs args
return $ Fn newdefs newargs ret
mangleType atypes ret = return $ Fn [] atypes ret
remove (a:as) (d:ds) (b:bs) = remove as ds bs
remove (a:as) [] (b:bs) = remove as [] bs
remove [] ds xs = return (ds,xs)
remove xs _ [] = fail $ file ++":" ++show line ++
":Too many arguments in partial application"
insertatypes xs (Fn defs args ret) =
let (newargs,numleft) = ia xs args in
(Fn defs newargs ret, numleft)
ia [] as = (as, length as)
ia (x:xs) (a:as) = let (newargs,numleft) = (ia xs as) in
(x:newargs,numleft)
ia xs [] = ([], 0)
ti env next (RForeign file line ty f args) eqns exp rexp = do
(achecks,aeqns,next') <- checkargs args eqns next
neweqns <- addEq file line (appsyn tys ty, exp, "foreign application") aeqns
return (Foreign (appsyn tys ty) f achecks, neweqns, next')
where checkargs [] eqns next = return ([],eqns,next)
checkargs (a:as) eqns next = do
(achecks,aeqns,next') <- checkargs as eqns next
let newtv = TyVar (MN ("TYPE",next'))
(ainf,aeqns',next'') <- ti env (next'+1) a aeqns newtv rexp
return ((ainf,newtv):achecks,aeqns',next'')
ti env next (RWhile file line cond loop) eqns exp rexp = do
(cinf, ceqns, next') <- ti env next cond eqns (Prim Boolean) rexp
(linf, leqns, next'') <- ti env next' loop ceqns (Prim Void) rexp
neweqns <- addEq file line (Prim Void, exp, "while loop") leqns
return (While cinf linf, neweqns, next'')
ti env next (RDoWhile file line loop cond) eqns exp rexp = do
(cinf, ceqns, next') <- ti env next cond eqns (Prim Boolean) rexp
(linf, leqns, next'') <- ti env next' loop ceqns (Prim Void) rexp
neweqns <- addEq file line (Prim Void, exp, "do...while loop") leqns
return (DoWhile linf cinf, neweqns, next'')
ti env next (RFor file line l idxname vals loop) eqns exp rexp = do
let counter1 = case idxname of
Nothing -> MN ("counter",(length env))
Just x -> x
let counter2 = MN ("counter",(length env)+1)
(lcheck,lt,leqns,next') <- tclval env next l eqns rexp
let arraylt = TyVar (MN ("TYPE",next'))
let env' = env ++ [(counter1,Prim Number),(counter2,arraylt)]
(vinf, veqns, next'') <- ti env' (next'+1) vals leqns arraylt rexp
phi <- mkSubst veqns
let atype = subst phi arraylt
case atype of
Array _ -> do
veqns' <- addEq file line (arraylt, Array lt, "for loop") veqns
(linf, leqns, next''') <- ti env' next'' loop veqns' (Prim Void) rexp
let vl = pToV (map mkpub env') linf
neweqns <- addEq file line (Prim Void, exp, "for loop") leqns
let counteri = length env
let counterj = (length env)+1
return (For counteri (Just counter1) counterj lcheck vinf vl, neweqns, next''')
-- convert into a call to
-- try {
-- traverse(\(lt l, Int idxname) { loop; return true; }, vals);
-- } catch(Return(v)) {
-- return v;
-- } (or equivalent VoidReturn if we're in a void function)
-- inside loop, top level break becomes 'return false'
-- VoidReturn becomes throw(VoidReturn), return x becomes throw(Return(x))
-- Check it like it's an ordinary loop, then mangle the contents.
TyApp _ [argt] ->
do let countername = case idxname of
(Just n) -> n
Nothing -> (MN ("counter", next'))
-- TMP HACK: don't care about the answer, just want to verify it
-- It's needlessly slow to do this twice. But while we get
-- it working it's much easier than manipulating typechecked
-- things where we have to deal with the new exception variable
-- we're about to introduce...
(_,_,_) <- ti env' next'' loop veqns (Prim Void) rexp
lname <- case l of
(RAName f l n) -> return n
_ -> fail $ file ++ ":" ++ show line ++ ":for loop must assign to a variable"
let blocklam = RClosure file line [(lname, argt),
(countername, Prim Number)]
(RSeq file line modloop
(RReturn file line
(RConst file line
(Bo True))))
let code = RDeclare file line ((MN ("c", next'+1)), True)
UnknownType
(RNewTryCatch file line
(RApply file line (RQVar file line (UN "traverse"))
[blocklam, vals])
(catchBlock rexp (next'+1)))
ti env (next'+2) code veqns exp rexp
t -> fail $ file ++ ":" ++ show line ++ ":for loop cannot iterate over " ++ show t
where seq x y = RSeq file line x y
bind n t v b = RBind file line n t v b
cname = (MN ("lazycount",next))
count = RVar file line cname
apply x y = RApply file line
(RQVar file line (NS (UN "LazyArray") (UN x))) y
while x y = RWhile file line x y
not b = RUnary file line Not b
assign l v = RAssign file line l v
assignname l v = RAssign file line (RAName file line l) v
modloop = mkTraverse loop
catchBlock (Prim Void) next
= [RCatch file line (Left ((UN "Loop_VoidReturn"),[]))
(RVoidReturn file line)]
catchBlock _ next
= [RCatch file line (Left ((UN "Loop_Return"),
[(MN ("c", next))]))
(RReturn file line
(RApply file line (RVar file line (UN "subvert"))
[(RQVar file line (MN ("c", next)))]))]
ti env next (RTryCatch file line tr ca x fin) eqns exp rexp = do
(trinf, treqns, next') <- ti env next tr eqns (Prim Void) rexp
(cainf, caeqns, next'') <- ti env next' ca treqns (Prim Void) rexp
(xinf, xeqns, next''') <- ti env next'' (RVar file line x) caeqns (Prim Exception) rexp
(fininf, feqns, next'''') <- ti env next''' fin xeqns (Prim Void) rexp
-- (yinf, yeqns, next'''') <- ti env next''' (RVar file line y) xeqns (Prim Number)
return (TryCatch trinf cainf xinf fininf, feqns, next'''')
ti env next (RNewTryCatch file line tr cs) eqns exp rexp = do
(trinf, treqns, next') <- ti env next tr eqns (Prim Void) rexp
(csinf, cseqns, next'') <- exinf env next' cs treqns (Prim Void) rexp
return (NewTryCatch trinf csinf, cseqns, next'')
ti env next (RThrow file line exc) eqns exp rexp = do
(einf, eeqns, next') <- ti env next exc eqns (Prim Exception) rexp
return (Annotation (Line file line) (Throw einf), eeqns, next')
ti env next (RExcept file line str code) eqns exp rexp = do
(sinf, seqns, next') <- ti env next str eqns (Prim StringType) rexp
(cinf, ceqns, next'') <- ti env next' code seqns (Prim Number) rexp
return (Except sinf cinf, ceqns, next'')
ti env next (RBreak file line) eqns exp rexp = do
neweqns <- addEq file line (Prim Void, exp, "break") eqns
return (Break file line, neweqns, next)
ti env next (RVoidReturn file line) eqns exp rexp =
case rexp of
(Prim Void) -> do
neweqns <- addEq file line (Prim Void, exp, "return") eqns
return (VoidReturn, neweqns, next)
_ -> fail $ file ++ ":" ++ show line ++ ":must return a value from non-void function"
ti env next (RPrint file line r) eqns exp rexp = do
let rtv = TyVar (MN ("TYPE",next))
(rinf, reqns, next') <- ti env (next+1) r eqns rtv rexp
neweqns <- addEq file line (Prim Void,exp,"trace") reqns
return (InferPrint rinf rtv file line, neweqns, next')
ti env next (RInfix file line op x y) eqns exp rexp = do
let xtv = TyVar (MN ("TYPE",next))
(xinf, xeqns, next') <- ti env (next+1) x eqns xtv rexp
let ytv = TyVar (MN ("TYPE",next'))
(yinf, yeqns, next'') <- ti env (next'+1) y xeqns ytv rexp
phi <- mkSubst yeqns
let xtype = subst phi xtv
let ytype = subst phi ytv
neweqns <- addEq file line ((getOpType op xtype ytype),exp,"operator "++show op) yeqns
-- Some infix operators must act on variables
-- of the same type, others can have coercions inserted
neweqns' <- addOpEq op file line (xtv,ytv,"operator "++show op) neweqns
return (InferInfix op xinf yinf (xtype,ytype,(getOpType op xtype ytype)) file line, neweqns', next'')
where addOpEq Equal f l eq eqns = addEq f l eq eqns
addOpEq NEqual f l eq eqns = addEq f l eq eqns
addOpEq _ f l eq eqns = return eqns
ti env next (RUnary file line op x) eqns exp rexp = do
let xtv = TyVar (MN ("TYPE",next))
(xinf, xeqns, next') <- ti env (next+1) x eqns xtv rexp
neweqns <- addEq file line ((getUnaryType op xtv),exp,"operator "++show op) xeqns
return (InferUnary op xinf (xtv,getUnaryType op xtv) file line, neweqns, next')
ti env next (RCoerce file line t v) eqns exp rexp = do
let vtv = TyVar (MN ("TYPE",next))
(vinf,veqns,next') <- ti env (next+1) v eqns vtv rexp
neweqns <- addEq file line (t,exp,"coercion") veqns
return (InferCoerce vtv t vinf file line, neweqns, next')
ti env next (RCase file line v alts) eqns exp rexp = do
let vtv = TyVar (MN ("TYPE",next))
(vinf,veqns,next') <- ti env (next+1) v eqns vtv rexp
(alts,aeqns,next'') <- altinf env next' alts veqns vtv exp rexp
return (Annotation (Line file line) (Case vinf (sort alts)),
aeqns, next'')
ti env next (RMatch file line v alts) eqns exp rexp = do
-- Check the alternatives before we do anything, because then the
-- error message will be based on the actual code, not the transformed
-- code. It's a bit wasteful, because we have to do it again anyway,
-- but at least it gives meaningful feedback, and helps verify that
-- the match compiler is correct,
let vtv = TyVar (MN ("TYPE",next))
(eqns', next') <- verifyAlts env (next+1) alts eqns vtv exp rexp
case (mkSubst eqns') of
Failure e f l -> fail e
_ -> return ()
mapM_ (checkLinear mod ctxt) alts
let (simpleCase, next') = mkCase file line ctxt mod next v alts
{- trace (show simpleCase) $ -}
ti env next simpleCase eqns exp rexp
ti env next (RIf file line cond ift iff) eqns exp rexp = do
(cinf, ceqns, next') <- ti env next cond eqns (Prim Boolean) rexp
(tinf, teqns, next'') <- ti env next' ift ceqns exp rexp
(finf, eeqns, next''') <- ti env next'' iff teqns exp rexp
return (If cinf tinf finf, eeqns, next''')
ti env next (RIndex file line e i) eqns exp rexp = do
(einf, eeqns, next') <- ti env next e eqns (Array exp) rexp
(iinf, ieqns, next'') <- ti env next' i eeqns (Prim Number) rexp
return (Index einf iinf, ieqns, next'')
ti env next (RField file line v f) eqns exp rexp = do
let newtv = TyVar (MN ("FV",next))
(vinf, veqns, next') <- ti env (next+1) v eqns newtv rexp
-- Need to know what newtv really is before we go on...
phi <- mkSubst veqns
let vtype = subst phi newtv
let (fudgedt, next'') = fudgevars vtype next'
lookt <- normalise False file line mod tys fudgedt
(fty, arg, tag) <- getFieldType flds f lookt file line
eqns' <- addEq file line (fty, exp, "field access '" ++ showuser f ++ "'") veqns
return (Annotation (Line file line) (Field vinf f arg tag),
eqns', next'')
ti env next (RArrayInit file line xs) eqns exp rexp = do
let newtv = TyVar (MN ("TYPE",next))
eqns' <- addEq file line (Array newtv, exp, "array initialisation") eqns
(xsinf, xseqns, next') <- tis env (next+1) xs eqns' newtv
return (ArrayInit xsinf, xseqns, next')
where tis env next [] eqns exp = return ([], eqns, next)
tis env next (x:xs) eqns exp = do
(xinf,xeqns,next') <- ti env next x eqns exp rexp
(xsinf,xseqns,next'') <- tis env next' xs xeqns exp
return (xinf:xsinf, xseqns, next'')
ti env next (RNoop file line) eqns exp rexp = do
neweqns <- addEq file line (Prim Void, exp, "no-op") eqns
return (Noop, neweqns, next)
ti env next (RUnderscore file line) eqns exp rexp =
-- placeholder - this never gets compiled.
return (Noop, eqns, next)
ti env next (RVMPtr file line) eqns exp rexp = do
neweqns <- addEq file line (Prim Pointer, exp, "VM pointer") eqns
return (VMPtr, neweqns, next)
ti env next (RLength file line str) eqns exp rexp = do
eqns' <- addEq file line (Prim Number, exp, "string length") eqns
(strinf, streqns, next') <- ti env (next+1) str eqns' (Prim StringType) rexp
return (Length strinf, streqns, next')
ti env next (RMetavar f l i) eqns exp rexp =
return (Metavar f l i, eqns, next)
-- ti env next x eqns exp = error $ show x
verifyAlts env next [] eqns vt exp rexp = return (eqns, next)
-- the parser will only ever give us one pattern, this only becomes a list
-- during intermediate stages (for the moment). Don't check the return
-- value, that'll get done later.
-- All we're doing here is checking that the patterns are all consistent
-- with each other.
verifyAlts env next ((MAlt _ _ [p] res):ms) eqns vt exp rexp
= do (pinf, peqns, next') <- ti env next p eqns vt rexp
(eqns', next'') <- verifyAlts env next' ms peqns vt exp rexp
return (eqns', next'')
altinf env next [] eqns vt exp rexp = return ([],eqns,next)
altinf env next ((RDefault file line r):xs) eqns vt exp rexp
= do (xsinf, xseqns, next') <- altinf env next xs eqns vt exp rexp
(rinf, reqns, next'') <- ti env next' r xseqns exp rexp
return ((Default rinf):xsinf, reqns, next'')
altinf env next ((RConstAlt file line c r):xs) eqns vt exp rexp
= do (xsinf, xseqns, next') <- altinf env next xs eqns vt exp rexp
let (cv,Prim ct) = tcConst c -- ct and vt should be the same
-- ct must be something we can do a case on
checkCaseable ct file line
(rinf, reqns, next'') <- ti env next' r xseqns exp rexp
neweqns <- addEq file line (vt, Prim ct, "case constant") reqns
return ((ConstAlt ct c rinf):xsinf, neweqns, next'')
where checkCaseable Number _ _ = return ()
checkCaseable Character _ _ = return ()
checkCaseable Boolean _ _ = return ()
checkCaseable StringType _ _ = return ()
checkCaseable x f l = fail $ f ++":"++show l++":" ++
"Can't do case analysis on " ++ show (Prim x)
altinf env next ((RArrayAlt file line args r):xs) eqns vt exp rexp
= do let arr = RArrayInit file line (map (RVar file line) args)
(arinf, areqns, next') <- ti env next arr eqns vt rexp
(xsinf, xseqns, next'') <- altinf env next' xs areqns vt exp rexp
(rinf, reqns, next''') <- ti env next'' r xseqns exp rexp
return ((ArrayAlt (map (\x -> Global x file line) args) rinf):xsinf,
reqns, next''')
altinf env next ((RAlt file line con args r):xs) eqns vt exp rexp
= do
conname <- case ctxtlookup mod con ctxt Nothing copts of
Success x -> return x
Failure err _ _ -> fail $ file ++ ":" ++ show line ++
":" ++ err
let app = RApply file line (RQVar file line (fst conname)) (map (RVar file line) args)
-- let app = RApply file line con (map (RVar file line) args)
(ainf,aeqns,next') <- ti env next app eqns vt rexp
(xsinf, xseqns, next'') <- altinf env next' xs aeqns vt exp rexp
(rinf,reqns,next''') <- ti env next'' r xseqns exp rexp
(tag,tot) <- gettag (fst conname)
return ((Alt tag tot (map (\x -> Global x file line) args) rinf):xsinf,reqns,next''')
exinf env next [] eqns exp rexp = return ([], eqns, next)
exinf env next ((RCatch f l (Left (ex,args)) handler):xs) eqns exp rexp = do
(rest, eqns', next') <- exinf env next xs eqns exp rexp
case exceptlookup mod ex excs of
Got (fulln, tys) -> do
(args, eqns'', next'') <- checkExArgs f l tys args env eqns' next' rexp
(hinf, heqns, next''') <- ti env next'' handler eqns'' exp rexp
return ((Catch (Left (fulln, args)) hinf):rest, heqns, next''')
am -> fail $ f ++ ":" ++ show l ++ ":" ++ show am
exinf env next ((RCatch f l (Right x) handler):xs) eqns exp rexp = do
-- if x is a defined exception, we should match against it rather
-- than use this as the catch all case.
case exceptlookup mod x excs of
Got (fulln, _) ->
exinf env next ((RCatch f l (Left (x, [])) handler):xs) eqns exp rexp
_ -> do (rest, eqns', next') <- exinf env next xs eqns exp rexp
-- 'rest' will never get caught, so don't compile it.
(hinf, heqns, next'') <- ti env next' handler eqns' exp rexp
(xinf, xeqns, next''') <- ti env next'' (RVar f l x) heqns (Prim Exception) rexp
return ((Catch (Right xinf) hinf):[], xeqns, next''')
checkExArgs f l [] [] env eqns next rexp = return ([], eqns, next)
checkExArgs f l (ty:tys) (x:args) env eqns next rexp = do
(rest, eqns', next') <- checkExArgs f l tys args env eqns next rexp
(xinf, xeqns, next'') <- ti env next' (RVar f l x) eqns' ty rexp
return (xinf:rest, xeqns, next'')
checkExArgs f l [] _ _ _ _ _ = fail $ f ++ ":" ++ show l ++ ":Too many arguments to exception"
checkExArgs f l _ _ _ _ _ _ = fail $ f ++ ":" ++ show l ++ ":Too few arguments to exception"
gettag n = case lookup n tags of
Nothing -> fail $ "Internal tag error (" ++ showuser n ++ "\n" ++ show tags ++ ")"
(Just a) -> return a
tclval env next (RAName file line n) eqns rexp = do
let np = getpos n (map mkpub env)
case (getType n env) of
Just nt -> return (AName np,(appsyn tys nt),eqns, next)
Nothing -> do case getType n globs of
Just (gt,gid) ->
return (AGlob gid,(appsyn tys gt), eqns, next)
Nothing -> fail $ file++":"++show line++":Need type declaration for name " ++ showuser n
tclval env next (RAIndex file line r idx) eqns rexp = do
(iinf,ieqns,next') <- ti env next idx eqns (Prim Number) rexp
(rcheck,rt,reqns,next'') <- tclval env next' r ieqns rexp
let newtv = TyVar (MN ("TYPE",next''))
neweqns <- addEq file line (rt,Array newtv, "array lvalue") reqns
return (AIndex rcheck iinf, newtv, neweqns,(next''+1))
tclval env next (RAField file line r f) eqns rexp = do
(rcheck,rt,reqns,next') <- tclval env next r eqns rexp
-- n needs to be a valid field for the type of r
-- get the real type of r
phi <- mkSubst reqns
let realrt = subst phi rt
let (fudgedt, next'') = fudgevars realrt next'
lookt <- normalise False file line mod tys fudgedt
(fty, arg, tag) <- getFieldType flds f lookt file line
return (AField rcheck f arg tag, (appsyn tys fty), reqns, next'')
-- Need to take possible coercions into account too!
getOpType Plus x y = (biggert x y)
getOpType Minus x y = (biggert x y)
getOpType Times x y = (biggert x y)
getOpType Divide x y = (biggert x y)
getOpType Modulo x y = (biggert x y)
getOpType Power x y = (biggert x y)
getOpType OpShLeft x y = (biggert x y)
getOpType OpShRight x y = (biggert x y)
getOpType OpAnd x y = (biggert x y)
getOpType OpOr x y = (biggert x y)
getOpType OpXOR x y = (biggert x y)
getOpType _ _ _ = Prim Boolean
getUnaryType Not x = x
getUnaryType Neg x = x
tyerror file line x = file ++ ":" ++ show line ++ ":" ++ x
-- FIXME: Check that the default arguments are valid things
{-
insertdefaults :: [Raw] -> Raw -> Context -> [Raw]
insertdefaults args (RQVar _ _ f) ctxt =
case (ctxtlookup mod f ctxt) of
Nothing -> args
Just (n,(Fn defs _ _)) -> idefs' defs args
insertdefaults args (RVar _ _ f) ctxt =
case (ctxtlookup mod f ctxt) of
Nothing -> args
Just (n,(Fn defs _ _)) -> idefs' defs args
insertdefaults args _ _ = args -}
insertdefaults :: [Raw] -> Type -> [Raw]
insertdefaults args (Fn defs _ _) = idefs' defs args
insertdefaults args _ = args
idefs' [] [] = []
idefs' (x:xs) (y:ys) = y:(idefs' xs ys)
idefs' (Just v:xs) [] = v:(idefs' xs [])
idefs' _ ys = ys
addEq :: Monad m => String -> Int -> (Type,Type,String) ->
Equation -> m Equation
--addEq file line (lt,rt) phi = unify phi ((subst phi lt),(subst phi rt),file,line)
addEq file line (lt,rt,ctxt) (eqn,subst)
= case unify subst (lt,rt,file,line,ctxt) of
Success subst' -> return ((lt,rt,file,line,ctxt):eqn,subst')
Failure err f l -> fail $ err
getFieldType :: Monad m => Fields ->
Name -> -- Field name
Type -> -- Type to project field from (needs to be concrete)
String ->
Int ->
m (Type, Int, Int) -- Field type, argument and tag.
getFieldType fs f ty file line = {- trace (show fs) $ -}
fieldLookup fs f ty file line
fieldLookup :: Monad m => Fields -> Name -> Type -> String -> Int ->
m (Type, Int, Int)
fieldLookup [] n ty f l = fail $ f ++ ":" ++ show l ++ ":" ++ showuser n ++ " is an unknown field of " ++ show ty
fieldLookup (((n,ty),(fty, arg, tag)): xs) fn exp f l
| n == fn = case (getVarTypes ty exp ("field access '" ++ showuser fn ++ "'")) of
Nothing -> fieldLookup xs fn exp f l
(Just phi) -> return ({-trace ("Found " ++ show ty ++ "," ++ show fty ++ "," ++ show (subst phi fty))-} (subst phi fty, arg,tag))
| otherwise = fieldLookup xs fn exp f l
tcConst :: Const -> (Expr Name, Type)
tcConst (Num x) = (GConst (Num x), Prim Number)
tcConst (Ch c) = (GConst (Ch c), Prim Character)
tcConst (Bo b) = (GConst (Bo b), Prim Boolean)
tcConst (Re r) = (GConst (Re r), Prim RealNum)
tcConst (Str s) = (GConst (Str s), Prim StringType)
tcConst (Exc s i) = (GConst (Exc s i), Prim Exception)
tcConst Empty = (GConst Empty, Prim Void)
appsyn tys t = {- trace ((show t) ++ " to " ++ show (syn t)) $ -} syn t where
syn (Prim p) = (Prim p)
syn (Fn ns ts t) = Fn ns (map syn ts) (syn t)
syn (Array t) = Array (syn t)
syn (User n) = User (resolve tys n)
syn (TyApp n ts) = TyApp (syn n) (map syn ts)
syn UnknownType = UnknownType
{- where resolve [] n = n
resolve ((cn@(NS _ bn),ti):xs) n | bn == n = cn
resolve ((x,ti):xs) n | x == n = x
resolve (_:xs) n = resolve xs n-}
-- syn (Syn n) = error "Internal error"
{- case lookup n tys of
Nothing -> (TyVar n)
(Just x) -> x -}
syn (TyVar n) = TyVar n
synctx tys (n,ty) = (n,appsyn tys ty)
normalisectx f l mod tys (n,ty) = do ty' <- normalise True f l mod tys ty
return (n,ty')
checkTy :: Monad m => Types -> Type -> Type -> String -> m ()
checkTy tys x y err = if convert (appsyn tys x) (appsyn tys y)
then return ()
else fail err
-- Step 3: Given a list of type equations, work out what types the
-- type variables actually are. Do this by unifying all the equations.
-- Do something hairy to maintain a list of all the errors that come up.
mkSubst :: Monad m => Equation -> m Subst
mkSubst (eqs,s) = return s
{-
mkSubst eqs = do phi <- mkS' [] eqs
case phi of
(x,[]) -> return x
(_,errs) -> fail $ concat $ reverse $ map (++"\n") (nub errs)
mkS' errs [] = return (id_subst,[])
mkS' errs ((t1,t2,f,l):xs) = do
(phi',errs') <- mkS' errs xs
case unify phi' (t1,t2,f,l) of
Success newphi -> return (newphi,errs')
Failure err f l -> return (phi',err:errs')
-}
-- Step 4: Substitute the type equations into the term with the substitution
-- we got from the last step.
substTerm :: Monad m => Name -> -- Module name
Context -> Subst -> Expr Name -> m (Expr Name)
substTerm mod ctxt phi t = st t
where
st (Lambda iv args exp) = do exp' <- st exp
return $ Lambda iv (lamsubst args) exp'
where lamsubst [] = []
lamsubst ((n,ty):xs) = (n,subst phi ty):(lamsubst xs)
st (Annotation (Line f l) (Closure args rt exp)) =
do exp' <- st exp
-- Check here that closure contains a return statement
checkReturn f l "lambda" (Fn [] [] (subst phi rt)) exp'
-- finished with annotation now
return $ Closure (lamsubst args) (subst phi rt) exp'
where lamsubst [] = []
lamsubst ((n,ty):xs) = (n,subst phi ty):(lamsubst xs)
st (Bind n ty e1 e2) = do e1' <- st e1
e2' <- st e2
return $ Bind n (subst phi ty) e1' e2'
st (Declare f l n ty e) =
do e' <- st e
let ty' = subst phi ty
case ty' of
(Prim Void) ->
fail $ f ++":"++ show l ++":"++
showuser (fst n) ++ " has type Void"
_ -> return $ Declare f l n ty' e'
st (Return r) = do r' <- st r
return $ Return r'
st (Assign a e) = do e' <- st e
a' <- asubst a
return $ Assign a' e'
where asubst (AName x) = return $ AName x
asubst (AGlob i) = return $ AGlob i
asubst (AIndex a e) = do a' <- asubst a
e' <- st e
return $ AIndex a' e'
asubst (AField a n arg t) = do a' <- asubst a
return $ AField a' n arg t
st (AssignOp op a e) = do e' <- st e
a' <- asubst a
return $ AssignOp op a' e'
where asubst (AName x) = return $ AName x
asubst (AGlob i) = return $ AGlob i
asubst (AIndex a e) = do a' <- asubst a
e' <- st e
return $ AIndex a' e'
asubst (AField a n arg t) = do a' <- asubst a
return $ AField a' n arg t
st (Seq e1 e2) = do e1' <- st e1
e2' <- st e2
return $ Seq e1' e2'
st (Apply e1 args) = do e1' <- st e1
args' <- mapM st args
return $ Apply e1' args'
st (Partial b e1 args i)
= do e1' <- st e1
args' <- mapM st args
return $ Partial b e1' args' i
st (Foreign ty n args) = do args' <- fsubst args
return $ Foreign (subst phi ty) n args'
where fsubst [] = return []
fsubst ((e,ty):xs) = do e' <- st e
rest <- fsubst xs
return $ (e',subst phi ty):rest
st (While e1 e2) = do e1' <- st e1
e2' <- st e2
return $ While e1' e2'
st (DoWhile e1 e2) = do e1' <- st e1
e2' <- st e2
return $ DoWhile e1' e2'
st (For x nm y a e1 e2) = do e1' <- st e1
e2' <- st e2
a' <- asubst a
return $ For x nm y a' e1' e2'
where asubst (AName x) = return $ AName x
asubst (AIndex a e) = do a' <- asubst a
e' <- st e
return $ AIndex a' e'
st (TryCatch t c x f) = do t' <- st t
c' <- st c
f' <- st f
return $ TryCatch t' c' x f'
st (NewTryCatch t cs) = do t' <- st t
cs' <- stc cs
return $ NewTryCatch t' cs'
where stc [] = return []
stc ((Catch (Right e) h):cs) = do
cs' <- stc cs
e' <- st e
h' <- st h
return ((Catch (Right e') h'):cs')
stc ((Catch (Left (n,es)) h):cs) = do
cs' <- stc cs
es' <- mapM st es
h' <- st h
return ((Catch (Left (n,es')) h'):cs')
st (Throw x) = do x' <- st x
return (Throw x')
st (Except x y) = do x' <- st x
y' <- st y
return (Except x' y')
st (InferPrint e t f l) = do
e' <- st e
case (subst phi t) of
(Prim Number) -> return $ PrintNum e'
(Prim StringType) -> return $ PrintStr e'
(Prim Exception) -> return $ PrintExc e'
_ -> fail $ f ++ ":" ++ show l ++ ":Can't print type " ++ show t
st (InferInfix op e1 e2 (t1,t2,t3) f l) = do
e1' <- st e1
e2' <- st e2
checkInfix mod ctxt op e1' e2' (subst phi t1) (subst phi t2) (subst phi t3) f l
-- InferInfix op (st e1) (st e2) (subst phi t1,subst phi t2,subst phi t3)
-- f l
st (Append e1 e2) = do
e1' <- st e1
e2' <- st e2
return $ Append e1' e2'
st (InferUnary op e1 (t1,t2) f l) = do
e1' <- st e1
checkUnary op e1' (subst phi t1) (subst phi t2) f l
-- InferUnary op (st e1) (subst phi t1,subst phi t2) f l
st (InferCoerce t1 t2 e f l) = do
e' <- st e
checkCoerce (subst phi t1) (subst phi t2) e' f l
st (Case e1 e2) = do e1' <- st e1
e2' <- stalt e2
return $ Case e1' e2'
where stalt [] = return []
stalt ((Default ex):xs) =
do ex' <- st ex
rest <- stalt xs
return $ (Default ex'):rest
stalt ((ConstAlt pt c ex):xs) =
do ex' <- st ex
rest <- stalt xs
return $ (ConstAlt pt c ex'):rest
stalt ((Alt n t exps ex):xs) =
do ex' <- st ex
exps' <- mapM st exps
rest <- stalt xs
return $ (Alt n t exps' ex'):rest
stalt ((ArrayAlt exps ex):xs) =
do ex' <- st ex
exps' <- mapM st exps
rest <- stalt xs
return $ (ArrayAlt exps' ex'):rest
st (ArrayInit e) = do e' <- mapM st e
return $ ArrayInit e'
st (If e1 e2 e3) = do e1' <- st e1
e2' <- st e2
e3' <- st e3
return $ If e1' e2' e3'
st (Index e1 e2) = do e1' <- st e1
e2' <- st e2
return $ Index e1' e2'
st (Field e n a t) = do e' <- st e
return $ Field e' n a t
st (Annotation (DynCheck t) e)
= do e' <- st e
return $ Annotation (DynCheck (subst phi t)) e'
st (Annotation a e) = do e' <- st e
return $ Annotation a e'
st x = return x
checkInfix :: Monad m => Name -> Context -> Op -> Expr Name -> Expr Name ->
Type -> Type -> Type ->
String -> Int -> m (Expr Name)
-- If the types are different, try to insert a coercion
checkInfix mod ctxt op l r (Prim x) (Prim y) ret file line
| x `tlt` y = do col <- implicitCoerce x y l file line
checkInfix mod ctxt op col r (Prim y) (Prim y) ret file line
| y `tlt` x = do cor <- implicitCoerce y x r file line
checkInfix mod ctxt op l cor (Prim x) (Prim x) ret file line
checkInfix mod ctxt op l r (Prim StringType) (Prim StringType) (Prim Boolean) file line
| (op==Equal || op == NEqual) =
return $ CmpStr op l r
checkInfix mod ctxt Plus l r (Prim StringType) (Prim StringType) (Prim StringType) file line
= return $ Append l r
checkInfix mod ctxt op l r (Prim Number) (Prim Number) (Prim Number) file line
| (op==Plus || op==Minus || op==Times || op==Divide || op==Modulo ||
op==Power || op==OpAnd || op==OpOr || op==OpXOR ||
op==OpShLeft || op==OpShRight)
= return $ Infix op l r
checkInfix mod ctxt op l r (Prim RealNum) (Prim RealNum) (Prim RealNum) file line
| (op==Plus || op==Minus || op==Times || op==Divide ||
op==Power || op==OpAnd || op==OpOr)
= return $ RealInfix op l r
checkInfix mod ctxt op l r (Prim Number) (Prim Number) (Prim Boolean) file line
| (op==Equal || op==NEqual || op==OpLT || op==OpGT ||
op==OpLE || op==OpGE)
= return $ Infix op l r
checkInfix mod ctxt op l r (Prim RealNum) (Prim RealNum) (Prim Boolean) file line
| (op==Equal || op==NEqual || op==OpLT || op==OpGT ||
op==OpLE || op==OpGE)
= return $ RealInfix op l r
checkInfix mod ctxt op l r (Prim Character) (Prim Character) (Prim Boolean) file line
| (op==Equal || op==NEqual || op==OpLT || op==OpGT ||
op==OpLE || op==OpGE)
= return $ Infix op l r
checkInfix mod ctxt op l r (Prim Boolean) (Prim Boolean) (Prim Boolean) file line
| (op==Equal || op==NEqual || op==OpAndBool || op==OpOrBool)
= return $ Infix op l r
checkInfix mod ctxt op l r (Prim Exception) (Prim Exception) (Prim Boolean) file line
| (op==Equal || op==NEqual)
= return $ CmpExcept op l r
-- Defaults for equality, pass through to built in equal function
checkInfix mod ctxt Equal l r t1 t2 (Prim Boolean) file line
| t1==t2 = return $ Apply (Global eqfun eqmangle 2) [l,r]
checkInfix mod ctxt NEqual l r t1 t2 (Prim Boolean) file line
| t1==t2 = return $ Unary Not (Apply (Global eqfun eqmangle 2) [l,r])
{-
Operator overloading: It works but I'm still not switching it on until
I've either worked out proper general overloading or decided we shouldn't
worry about it.
checkInfix mod ctxt op l r tl tr ret file line
| Just (nm,ty@(Fn _ _ rty)) <-
ctxtlookup mod (OP op) ctxt (Just (Fn [] [tl,tr] ret)) []
= if (rty == ret) then
return $ Apply (Global nm (mangling ty) (argSpace ty)) [l,r]
else fail $ file ++ ":" ++ show line ++ ":Can't apply operator '" ++ show op ++ "' to " ++ show tl ++ " and " ++ show tr ++ " to give " ++ show ret
-}
checkInfix mod ctxt op l r tl tr ret file line = fail $ file ++ ":" ++ show line ++ ":Can't apply operator '" ++ show op ++ "' to " ++ show tl ++ " and " ++ show tr ++ " to give " ++ show ret
checkUnary :: Monad m => UnOp -> Expr Name ->
Type -> Type ->
String -> Int -> m (Expr Name)
checkUnary Not l (Prim Boolean) (Prim Boolean) file line =
return $ Unary Not l
checkUnary Neg l (Prim Number) (Prim Number) file line =
return $ Unary Neg l
checkUnary Neg l (Prim RealNum) (Prim RealNum) file line =
return $ RealUnary Neg l
checkUnary op l tl ret file line = fail $ file ++ ":" ++ show line ++ ":Can't apply operator '" ++ show op ++ "' to " ++ show tl ++ " to give " ++ show ret
checkCoerce :: Monad m => Type -> Type -> Expr Name -> String -> Int ->
m (Expr Name)
checkCoerce t1 t2 e file line
| (t1==(Prim Number) && t2==(Prim StringType)) ||
(t1==(Prim StringType) && t2==(Prim Number)) ||
(t1==(Prim RealNum) && t2==(Prim StringType)) ||
(t1==(Prim StringType) && t2==(Prim RealNum)) ||
(t1==(Prim Character) && t2==(Prim StringType)) ||
(t1==(Prim Boolean) && t2==(Prim StringType)) ||
(t1==(Prim RealNum) && t2==(Prim Number)) ||
(t1==(Prim Number) && t2==(Prim RealNum)) ||
(t1==(Prim Character) && t2==(Prim Number)) ||
(t1==(Prim Number) && t2==(Prim Character))
= return $ Coerce t1 t2 e
| otherwise = fail $ file ++ ":" ++ show line ++ ":Can't coerce from " ++ show t1 ++ " to " ++ show t2
implicitCoerce :: Monad m => PrimType -> PrimType -> Expr Name ->
String -> Int -> m (Expr Name)
implicitCoerce x y e f l = checkCoerce (Prim x) (Prim y) e f l
{-
mkCtxt :: ParseResult -> Tags -> Types -> Context
mkCtxt [] tags syns = []
mkCtxt ((FB (x,xt,_)):xs) tags syns
= let xft = appsyn syns xt in
((x,xft):(mkCtxt xs))
mkCtxt (_:xs) tags syns = mkCtxt xs
-}
type InferError = String
-- Main inference function; go through all of the definitions and get
-- their types.
inferAll :: MonadPlus m => Name -> -- Current module name
Context -> [InferError] -> GContext -> EContext ->
Tags -> Types -> Fields ->
Bool -> [RawDecl] -> Options ->
m (Program, [InferError], Context, GContext, EContext,
Tags, Types)
-- Finished
inferAll mod ctxt errs globs excs tags syns flds dump [] copts
= return ([], [], ctxt,globs,excs,tags,syns)
-- C Includes
inferAll mod ctxt errs globs excs tags syns flds dump ((CInc str):xs) copts =
do (rest, errs, ctxt', globs', excs', tags',syns') <- inferAll mod ctxt errs globs excs tags syns flds dump xs copts
return $ ((CInclude str):rest, errs, ctxt', globs', excs', tags',syns')
-- Function map names (lifted functions)
inferAll mod ctxt errs globs excs tags syns flds dump ((FMN str):xs) copts =
do (rest, errs, ctxt', globs', excs', tags',syns') <- inferAll mod ctxt errs globs excs tags syns flds dump xs copts
return $ ((FMName str):rest, errs, ctxt', globs', excs', tags',syns')
-- Import statements
inferAll mod ctxt errs globs excs tags syns flds dump ((Imp str):xs) copts =
do (rest, errs, ctxt', globs', excs', tags',syns') <- inferAll mod ctxt errs globs excs tags syns flds dump xs copts
return $ ((Imported str):rest, errs, ctxt', globs', excs', tags',syns')
-- Import searches (ignoreable)
inferAll mod ctxt errs globs excs tags syns flds dump ((SearchImport str):xs) copts =
do inferAll mod ctxt errs globs excs tags syns flds dump xs copts
-- Link directives
inferAll mod ctxt errs globs excs tags syns flds dump ((Link str):xs) copts =
do (rest, errs, ctxt', globs', excs', tags',syns') <- inferAll mod ctxt errs globs excs tags syns flds dump xs copts
return $ ((Linker str):rest, errs, ctxt', globs', excs', tags',syns')
-- Global variables
inferAll mod ctxt errs globs excs tags syns flds dump ((GlobDecl file line (n,t,v)):xs) copts =
do st <- normalise False file line mod syns t
let gid = length globs
(rest, errs, ctxt', globs', excs', tags',syns') <-
inferAll mod ctxt errs ((n,(st,gid)):globs) excs tags syns flds dump xs copts
vval <- checkGlob file line mod ctxt' globs excs tags syns flds v st copts
return ((Glob (n,st,gid,vval):rest), errs, ctxt', ((n,(st,gid)):globs), excs', tags', syns')
-- Constant functions with no type label. We need to do these separately,
-- because we need to determine their type before typechecking other functions
-- (usually we know the type of everything in advance)
inferAll mod ctxt errs globs excs tags syns flds dump ((FB (file,line,x,Fn [] [] UnknownType,fopts,Defined xr) comm):xs) copts =
do let xft' = Fn [] [] (TyVar (MN ("ret",0)))
let xrdec = insertdecl mod excs globs (addName ctxt x xft' fopts) xr
case infer mod ctxt globs excs tags syns flds xrdec
xft' copts of
Failure err f l -> do
-- check the rest anyway to see if we can get more errors
(rest, errs', ctxt', globs', excs', tags',syns') <-
inferAll mod ctxt errs globs excs tags
syns flds dump xs copts
return (rest, err:errs', ctxt, globs, excs, tags, syns)
Success (xrv,xeq) -> do
xeq' <- return $!
(if dump then (trace (showeqns x xft' xeq) xeq) else xeq)
phi' <- {- trace (show xrv) $ -} mkSubst xeq'
xfn <- substTerm mod ctxt phi' xrv
let xinft = subst phi' xft'
(rest, errs', ctxt', globs', excs', tags',syns') <-
inferAll mod (addName ctxt x xinft fopts) errs globs excs tags
syns flds dump xs copts
let xannot = Annotation (FnBody (showuser x) file line) xfn
return ((FunBind (file,line,x,xinft,fopts,Defined xannot) comm xinft):rest,
errs',
(addName ctxt' x xinft fopts), globs', excs', tags', syns')
-- Function definitions
inferAll mod ctxt errs globs excs tags syns flds dump ((FB (file,line,x,xt,fopts,Defined xr) comm):xs) copts =
do let xftin = appsyn syns xt
xft <- normalise False file line mod syns xftin
-- trace (showuser x++":"++show xft) $ return ()
-- If it's been defined before, and it's a DefaultDef, just ignore it.
if (DefaultDef `elem` fopts) && (defined ctxt x)
then inferAll mod ctxt errs globs excs tags syns flds dump xs copts
else do
checkRpt file line x xft ctxt (Repeatable `elem` fopts)
-- checkDefaultArgs xft mod ctxt globs tags syns flds
(rest, errs, ctxt', globs', excs', tags', syns') <-
case inferAll mod (addName ctxt x xft fopts) errs globs excs tags syns flds dump xs copts of
Success x -> return x
Failure err f l -> return ([], err:errs, ctxt, globs, excs, tags, syns)
let (xft',errs') = safedefaults mod ctxt' file line xft errs
let xrdec = insertdecl mod excs globs (addName ctxt' x xft' fopts) xr
case infer mod (addName ctxt' x xft' fopts)
globs' excs' tags' syns' flds xrdec xft' copts of
Failure err f l ->
return (rest, err:errs', ctxt', globs', excs', tags', syns')
Success (xrv,xeq) -> do
xeq' <- return $!
(if dump then (trace (showeqns x xft' xeq) xeq) else xeq)
phi' <- {- trace (show xrv) $ -} mkSubst xeq'
xfn <- substTerm mod ctxt phi' xrv
let xinft = subst phi' xft'
checkEq file line xinft xft'
checkReturn file line (showuser x) xinft xfn
let xannot = Annotation (FnBody (showuser x) file line) xfn
-- We ought to return xinft as the type, since that's what
-- we inferred. Alas, we currently need to use xft' instead
-- since we already put it in the context when we checked the
-- rest of the module. Need to rethink this whole process
-- really...
return {-$ trace ((show xrv)++"\n"++(show xfn)) $ -}
((FunBind (file,line,x,xft',fopts,Defined xannot) comm xt):rest,
errs',
(addName ctxt' x xft' fopts), globs', excs', tags', syns')
where mkfuntype f@(Fn _ _ _) = f
mkfuntype x = (Fn [] [] x)
checkDefaultArgs (Fn defs tys rt) mod ctxt globs tags
syns flds = cda defs tys
where cda [] [] = return ()
cda ((Just d):ds) (t:tys) =
do (_,_) <- infertype mod ctxt globs excs tags syns flds
d (Prim Void) t copts
cda ds tys
cda (_:ds) (_:tys) = cda ds tys
cda _ _ = fail "Can't happen (cda)"
checkDefaultArgs _ _ _ _ _ _ _ = fail "Can't happen (checkDefaultArgs)"
-- Imported function declaration
inferAll mod ctxt errs globs excs tags syns flds dump ((FB (file,line,x,xt,fopts,Unbound) comm):xs) copts =
do let xftin = appsyn syns (mkfuntype xt)
xft <- normalise False file line mod syns xftin
-- let xft = trace (show xt)mkfuntype xt
let (newctxt,newopts) = mergeIntoCtxt x xt fopts ctxt
(rest, errs, ctxt', globs', excs', tags', syns') <- inferAll mod (addName newctxt x xft newopts) errs globs excs tags syns flds dump xs copts
return $ ((FunBind (file,line,x,xft,newopts,Unbound) comm xft):rest, errs,
addName ctxt' x xft newopts, globs', excs', tags', syns')
where mkfuntype f@(Fn _ _ _) = f
mkfuntype x = (Fn [] [] x)
-- Imported and inlinable function declaration
inferAll mod ctxt errs globs excs tags syns flds dump ((FB (file,line,x,xt,fopts, ExtInlinable xr) comm):xs) copts =
do let xftin = appsyn syns (mkfuntype xt)
xft <- normalise False file line mod syns xftin
-- let xft = trace (show xt)mkfuntype xt
let (newctxt,newopts) = mergeIntoCtxt x xt fopts ctxt
(rest, errs, ctxt', globs', excs', tags', syns') <- inferAll mod (addName newctxt x xft newopts) errs globs excs tags syns flds dump xs copts
let xrdec = insertdecl mod excs globs (addName ctxt' x xft fopts) xr
case infer mod (addName ctxt' x xft fopts)
globs' excs' tags' syns' flds xrdec xft copts of
Failure err f l ->
return (rest, err:errs, ctxt', globs', excs', tags', syns')
Success (xrv,xeq) -> do
phi' <- {- trace (show xrv) $ -} mkSubst xeq
xfn <- substTerm mod ctxt phi' xrv
let xinft = subst phi' xft
checkEq file line xinft xft
checkReturn file line (showuser x) xft xfn
return $ ((FunBind (file,line,x,xft,newopts,ExtInlinable xfn) comm xft):rest, errs,
addName ctxt' x xft newopts, globs', excs', tags', syns')
where mkfuntype f@(Fn _ _ _) = f
mkfuntype x = (Fn [] [] x)
-- Type synonyms
inferAll mod ctxt errs globs excs tags tydefs flds dump ((TSyn (file,line,n,ps,ty,exp)):xs) copts =
do let def = Syn (map getname ps) ty
-- All typevars in <ty> must be listed in <ps>
checkTyVars file line ps ty
-- If it's a duplicate, check it's identical to what we already had.
newdefs <- checkDefined file line n tydefs def
(rest, errs, ctxt', globs', excs', tags',syns') <-
inferAll mod ctxt errs globs excs tags newdefs flds dump xs copts
-- normalise to check for cycles
foo <- normalise False file line mod syns' (TyApp (User n) ps)
return $ ((TySyn (file,line,n,(map getname ps),ty,exp):rest), errs,
ctxt', globs', excs', tags', syns')
where getname (TyVar x) = x
-- fail $ file ++ ":" ++ show line ++ ":Type synonyms are broken"
-- inferAll ctxt globs tags ((n,ty):syns) flds dump xs
-- Data declarations
inferAll mod ctxt errs globs excs tags tydefs flds dump ((DDecl f l dopts n tys consin comm):xs) copts =
do let newdefs = addToCtxt tydefs n (UserData tys)
-- Check it's not already defined
-- trace (show newdefs) $ return ()
cons <- normcons consin newdefs
checkData f l newdefs tys cons
(fbs, newflds, codegen) <- getFuns ctxt f l mod cons newdefs 0
-- trace (show fbs) $ return ()
checkRptFlds f l newflds n
if (codegen && n `elem` (getNames tydefs))
then fail $ f ++ ":" ++ show l ++ ": Data type " ++
showuser n ++ " already defined"
else return ()
let ctxt' = addNames ctxt (map (mkCtxtEntry [Public,Constructor])
(gettys newdefs fbs))
let tags' = (gettags fbs (length cons))++tags
(rest, errs, ctxt'', globs'', excs'', tags'', syns')
<- inferAll mod ctxt' errs globs excs tags' newdefs
(flds ++ newflds) dump xs copts
-- return $ (fbs++(DataDecl n tys cons):rest)
checkUserData f l mod syns' cons
return $ ([DataDecl f l dopts n tys cons comm]++fbs++rest, errs, ctxt'', globs'', excs'', tags'', syns')
where gettys s [] = []
gettys s ((FunBind (f,l,n,ty,_,_) _ _):xs) =
({-trace ((show n) ++ ":" ++ show ty) -}(n,appsyn s ty)):(gettys s xs)
gettags [] l = []
gettags ((FunBind (_,_,n,_,_,(DataCon t a _)) _ _):xs) l = (n,(t,l)):(gettags xs l)
normcons [] n = return []
normcons (x:xs) n = do rest <- normcons xs n
ncon <- normcon x n
return $ ncon:rest
normcon (Con n ty ns b) newdefs =
do normty <- normalise False f l mod newdefs (appsyn newdefs ty)
return $ Con n normty ns b
-- Exception declarations
inferAll mod ctxt errs globs excs tags tydefs flds dump ((ExtExc f l n tys):xs) copts =
do let exfnty = Fn [] tys (Prim Exception)
let exfnbody = FunBind (f, l, n, exfnty, [Public,Generated],
ExceptionFn n (length tys) False) "" exfnty
let exctxt = addName ctxt n exfnty [Public,Generated]
let newexcs = addToCtxt excs n tys
(rest, errs, ctxt', globs', excs', tags',syns') <-
inferAll mod exctxt errs globs newexcs tags tydefs flds dump xs copts
return $ (exfnbody:rest, errs, ctxt', globs', excs', tags', syns')
inferAll mod ctxt errs globs excs tags tydefs flds dump ((ExcDecl f l n tysin comm):xs) copts =
do tys <- mapM (normalise False f l mod tydefs) tysin
let fulln = NS mod n
let newexcs = addToCtxt excs fulln tys
-- add a function of called n of type Exception(tys), which constructs
-- the actual exception structure (TODO)
let exfnty = Fn [] tys (Prim Exception)
let exfnbody = FunBind (f, l, fulln, exfnty, [Public,Generated],
ExceptionFn fulln (length tys) True) "" exfnty
let exctxt = addName ctxt fulln exfnty [Public,Generated]
(rest, errs, ctxt', globs', excs', tags',syns') <-
inferAll mod exctxt errs globs newexcs tags tydefs flds dump xs copts
return ((ExceptDecl f l fulln tys comm):exfnbody:rest, errs, ctxt', globs', excs', tags', syns')
{-
inferAll ctxt tags syns ((CDecl n ty i t ar):xs) =
do (rest,ctxt',tags',syns') <- inferAll ctxt tags syns xs
let tags'' = (n,(i,t)):tags
return $ ((FunBind (n,ty,DataCon i ar)):rest, ctxt', tags'', syns')
-}
-- check that a default parameter is actually a constant
-- this is a bit too conservative and needs to do name lookups on RVar
safedefaults :: Name -> -- module name
Context -> String -> Int -> Type -> [InferError] -> (Type,[InferError])
safedefaults mod ctxt f l (Fn defs tys t) errs = ((Fn defs tys t),(safedefaults' mod ctxt f l defs errs))
safedefaults mod ctxt f l t errs = (t,errs)
safedefaults' :: Name -> Context -> String -> Int -> [Maybe Raw] -> [InferError] -> [InferError]
safedefaults' mod ctxt f l [] errs = errs
safedefaults' mod ctxt f l (d:ds) errs = safedefaults' mod ctxt f l ds (safedefaults'' mod ctxt f l d errs)
safedefaults'' :: Name -> Context -> String -> Int -> Maybe Raw -> [InferError] -> [InferError]
safedefaults'' mod ctxt f l Nothing errs = errs
safedefaults'' mod ctxt f l (Just v) errs = case (safedefault mod ctxt f l v) of
[] -> errs
xs -> concat([xs,errs]);
safedefault :: Name -> Context -> String -> Int -> Raw -> [InferError]
safedefault mod ctxt fi li (RConst f l v) = []
safedefault mod ctxt fi li (RClosure f l as v) = safedefault mod ctxt f l v
safedefault mod ctxt fi li (RApply f l fn args) = concat (map (safedefault mod ctxt f l) args)
safedefault mod ctxt fi li (RPartial f l fn args) = concat (map (safedefault mod ctxt f l) args)
safedefault mod ctxt fi li (RInfix f l op v v') = concat [(safedefault mod ctxt f l v),(safedefault mod ctxt f l v')]
safedefault mod ctxt fi li (RUnary f l op v) = safedefault mod ctxt f l v
safedefault mod ctxt fi li (RIndex f l vs idx) = concat [(safedefault mod ctxt f l vs),(safedefault mod ctxt f l idx)]
safedefault mod ctxt fi li (RField f l v n) = safedefault mod ctxt f l v
safedefault mod ctxt fi li (RArrayInit f l vs) = concat (map (safedefault mod ctxt f l) vs)
-- this would work if all the functions in the current module got
-- added to the context first...
safedefault mod ctxt fi li (RVar f l n) = case lookupname mod n ctxt of
[] -> [fi ++ ":" ++ show li ++ ": Default argument " ++ show n ++ " is not a constant"]
_ -> []
safedefault mod ctxt fi li v = [fi ++ ":" ++ show li ++ ": Default argument is not a constant"]
-- Return the function declarations and field names from a constructor
-- declaration
-- Also returns whether this needs code generating or not.
getFuns :: Monad m => Context -> String -> Int -> Name -> [ConDecl] ->
Types -> Int -> m (Program, Fields, Bool)
getFuns ctxt f l mod [] syns i = return ([], [], False)
getFuns ctxt f l mod ((Con n ty an codegen):xs) syns i
= do (rest, flds, _) <- getFuns ctxt f l mod xs syns (i+1)
if codegen
then checkRpt f l n ty ctxt False -- Check the name isn't used elsewhere
else return () -- Do nothing if it's from somewhere else
normty <- normalise False f l mod syns (appsyn syns ty)
-- trace (showuser n ++ ":" ++ show normty) $ return ()
return (((FunBind (f,l,n,normty,[Inline,Pure,Public,Constructor],DataCon i (getarglen ty) codegen) "" normty):rest),
(getFields (appsyn syns ty) an 0 i) ++ flds, codegen)
where getarglen (Fn _ tys _) = length tys
getarglen _ = 0
getFields (Fn _ ty tn) as argn tag = gf' ty as argn tag tn
gf' (x:xs) (a:as) argn tag tn =
((a,tn),(x,argn,tag)):(gf' xs as (argn+1) tag tn)
gf' _ _ _ _ _ = []
-- Check that field names are not repeated within a type definition
checkRptFlds :: Monad m => String -> Int ->
Fields -> Name -> m ()
checkRptFlds f l [] n = return ()
checkRptFlds f l (((fld,t),_):xs) n
| fld /= None && elem fld (map (fst.fst) xs)
= fail $ f ++ ":" ++ show l ++ ":" ++
"Field " ++ showuser fld ++ " is duplicated in type " ++ showuser n
| otherwise = checkRptFlds f l xs n
-- Check that a function which returns non-void does indeed return something
-- on all possible branches.
checkReturn :: Monad m => String -> Int ->
String -> -- User description of function name
Type -> -- Function type
(Expr Name) ->
m ()-- Function body
checkReturn _ _ _ (Fn _ _ (Prim Void)) _
= return () -- Don't care, it's a void.
checkReturn file line n _ body
| containsReturn body = return ()
| otherwise = fail $ file ++ ":" ++ show line ++
":not all branches of " ++ n ++ " return a value"
checkDefined :: Monad m => String -> Int -> Name -> Types ->
TypeInfo ->
m Types
checkDefined f l n tys def
= case lookupname None n tys of
[(_,x)] -> if (x==def) then return tys
else fail $ f ++ ":" ++ show l ++ ":" ++
"Type "++showuser n++" already defined"
_ -> return (addToCtxt tys n def)
checkTyVars :: Monad m => String -> Int -> [Type] -> Type -> m ()
checkTyVars f l ts t = ct t where
ct (Fn ds ts t) = do mapM_ ct ts
ct t
ct (Array t) = ct t
ct (TyApp t ts) = do ct t
mapM_ ct ts
ct t@(TyVar _) | t `elem` ts = return ()
| otherwise = fail $ f ++ ":" ++ show l ++ ":" ++
show t ++
" not declared as a parameter"
ct _ = return ()
checkData :: Monad m => String -> Int -> Types -- Synonyms/Datatypes
-> [Type] -- Parameters
-> [ConDecl] -- Constructor declarations
-> m () -- Just check it's okay
checkData f l syns tys [] = return ()
checkData f l syns tys (c:cs) = do checkConDecl f l syns tys c
checkData f l syns tys cs
checkConDecl f l syns tys (Con n ty _ _) =
do --normty <- normalise False f l syns ty
allDeclared f l n syns tys ty
allDeclared f l n dtys tys ty = {- trace (show ty) $ -} ad ty
where ad (Fn _ ts t) = mapM_ ad (t:ts)
ad (Array t) = ad t
ad (TyApp t ts) = do ad t
mapM_ ad ts
ad (TyVar x) | (TyVar x) `elem` tys = return ()
| otherwise = fail $ f ++ ":" ++ show l ++ ":" ++
"undeclared type variable " ++ showuser x
ad _ = return ()
checkUserData :: Monad m => String -> Int -> Name -> -- Module
Types -- Synonyms/Datatypes
-> [ConDecl] -- Constructor declarations
-> m () -- Just check it's okay
checkUserData f l mod syns [] = return ()
checkUserData f l mod syns (c:cs) = do checkUserDecl f l mod syns c
checkUserData f l mod syns cs
checkUserDecl f l mod syns (Con n ty _ _)
= do normty <- normalise False f l mod syns ty
userDeclared f l n syns normty
userDeclared f l n dtys ty = ad ty
where ad (Fn _ ts t) = mapM_ ad (t:ts)
ad (Array t) = ad t
ad (User n) = case (typelookup (UN "foo") n dtys) of
(Got _) -> return ()
_ -> fail $ f ++ ":" ++ show l ++ ":" ++
"unknown type "++ showuser n
ad (TyApp t ts) = do ad t
mapM_ ad ts
ad (TyVar x) = return ()
ad _ = return ()
checkGlob :: MonadPlus m => String -> Int ->
Name -> Context -> GContext -> EContext -> Tags -> Types ->
Fields -> Maybe Raw -> Type -> Options -> m (Maybe (Expr Name))
checkGlob f l mod ctxt globs excs tags tys flds (Just expr) (Prim Void) copts =
fail $ f ++ ":" ++ show l ++ ":Can't have a Void global variable"
checkGlob f l mod ctxt globs excs tags tys flds (Just expr) ty copts =
do (val,_) <- infertype mod ctxt globs excs tags tys flds expr (Prim Void) ty copts
return $ Just val
checkGlob _ _ _ _ _ _ _ _ _ Nothing _ _ = return Nothing
-- Given a polymorphic type, and an instance, get what types the variables
-- refer to (as a substitution)
getVarTypes :: Monad m => Type -> Type -> String -> m Subst
getVarTypes t1 t2 ctxt = do tvm <- cg t1 t2 []
(_,s) <- mkFSubst tvm
return s
where
mkFSubst [] = return ideq
mkFSubst ((l,r):xs) =
do xsubs <- mkFSubst xs
addEq "" 0 (TyVar l, r, ctxt) xsubs
-- mkSubst $ map (\ (x,y) -> (TyVar x,y,"",0)) xs
cg (TyVar x) y tvm =
case (lookup x tvm) of
(Just z) -> if y==z then return tvm
else fail "Type error"
Nothing -> return $ (x,y):tvm
cg t (TyVar y) tvm = fail "Type error"
cg (Array x) (Array y) tvm = cg x y tvm
cg (Fn ns ts t) (Fn ns' ts' t') tvm = do
tvm' <- cg t t' tvm
cgl ts ts' tvm'
cg (User n) (User n') tvm | n == n' = return tvm
| otherwise = fail "Type error"
cg (TyApp t ts) (TyApp t' ts') tvm = do tvm' <- cg t t' tvm
cgl ts ts' tvm'
cg (Prim x) (Prim y) tvm | x == y = return tvm
| otherwise = fail "Type error"
cg _ _ tvm = fail "Type error"
cgl [] [] tvm = return tvm
cgl (x:xs) (y:ys) tvm = do tvm' <- cg x y tvm
cgl xs ys tvm'
cgl _ _ tvm = fail "Type error"
checkRpt :: Monad m => String -> Int -> Name -> Type -> Context -> Bool -> m ()
checkRpt f l x ty xs rptable
= case lookupname None x xs of
[(_,(ty', _))] -> if (ty' == ty && (not rptable))
then fail $ f ++ ":" ++ show l ++ ":" ++ showuser x ++ " already defined"
else return ()
_ -> return ()
showtree :: Program -> String
showtree [] = ""
showtree ((FunBind (_,_,n,ty,fopts,Defined tr) _ _):xs) =
showuser n ++ " :: " ++ show ty ++ " " ++ show fopts ++ "\n" ++ show tr ++ "\n\n" ++ showtree xs
showtree ((FunBind (_,_,n,ty,fopts,ExceptionFn nm i True) _ _):xs) =
showuser n ++ " :: " ++ show ty ++ " " ++ show fopts ++ " = exception\n\n" ++ showtree xs
showtree (_:xs) = showtree xs
showeqns :: Name -> Type -> Equation -> String
showeqns n ty (es,_) = showuser n ++ " :: " ++ show ty ++ ":\n" ++ se' es
where se' [] = ""
se' ((t1,t2,f,l,ctxt):xs) = show t1 ++ " = " ++ show t2 ++
" ("++f++":"++show l++", " ++ ctxt ++
")\n" ++ se' xs
|