1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
|
{-
Kaya - My favourite toy language.
Copyright (C) 2004, 2005 Edwin Brady
This file is distributed under the terms of the GNU General
Public Licence. See COPYING for licence.
-}
module Language(module AbsSyntax,
module Context,
module Language) where
----- Useful gadgets on the abstract syntax; also reexports syntax types.
import List
import Debug.Trace
import AbsSyntax
import Context
import Options
-- Merge somehow with 'Error' and tidy up name lookup functions.
data Lookup a = Got a
| Ambiguous Name [Name]
| UnknownName Name
instance Show a => Show (Lookup a) where
show x = s' x
where
s' (Got a) = "Success: " ++ show a
s' (Ambiguous n xs) = "Ambiguous name: " ++ showuser n ++
" (Could be " ++ showthings (sort xs) ++ ")"
s' (UnknownName n) = "Unknown name: " ++ showuser n
showthings [] = ""
showthings [x] = showuser x
showthings (x:xs) = showuser x ++ ", " ++ showthings xs
-- Lookup a name, bearing in mind namespaces.
-- Returns all possibilities, in the current module and others.
{-
lookupname :: Name -> -- current module
Name -> -- name to lookup (possibly decorated)
[(Name,a)] -> [(Name,a)]
lookupname mod n gam = checkCurrent $ lu n (decorated n) gam [] where
lu n _ [] acc = acc
lu n True ((x,a):xs) acc | n==x = lu n True xs ((x,a):acc)
| otherwise = lu n True xs acc
lu n False ((x,a):xs) acc | nameMatches n x = lu n False xs ((x,a):acc)
| otherwise = lu n False xs acc
-- in theory, returns names in the current module if they exist, or
-- all names if the name is not in the current module. But in the
-- presence of ad-hoc overloading, I don't think this makes sense.
checkCurrent xs = xs {- cc xs xs
cc [] xs = xs
cc ((NS m n,x):xs) _ | m == mod = (NS m n,x):(cc xs [])
cc (_:ys) xs = cc ys xs -}
decorated (NS _ _) = True
decorated _ = False
nameMatches n (NS _ a) = nameMatches n a
nameMatches n x = n == x
-}
-- Lookup in the context (ignores namespace if no ambiguity, returns
-- fully qualified name)
-- FIXME: This should return a Lookup structure, to be more informative.
ctxtlookup :: Monad m => Name -> -- Current module
Name -> Context ->
Maybe Type -> -- type information to help disambiguate
Options -> -- compiler options
m (Name, Type)
ctxtlookup mod n ctx ty copts
= do let opts = nub (lookupname mod n ctx)
let pub = filter accessible opts
let priv = opts \\ pub
let pubs = (tymatch ty (nubnames pub))
let depr = checkDepr pubs
returnName pubs priv depr
where returnName _ _ True = case ty of
(Just jty) -> fail $ "Can't use deprecated function " ++ showuser n ++ "(" ++ showargs jty ++ ")"
Nothing -> fail $ "Can't use deprecated function " ++ showuser n
returnName [(x,(ty,opts))] _ False = return (x,ty)
returnName [] [] False = fail $ "Unknown name " ++ showuser n
returnName [] priv False = fail $ "Can't use private name: " ++
showuser n ++ " (" ++ showthings priv ++ ")"
returnName pub _ False = fail $ "Ambiguous name: " ++ showuser n ++
" (Could be " ++
showthings pub ++ ")"
checkDepr [] = False
-- only need to check first element
checkDepr ((x,(ty,opts)):xs) = checkDepr' (elem DeprecatedFn opts)
-- something else will error first here
-- checkDepr _ = False
checkDepr' False = False
checkDepr' True = useDepr (elem DeprFail copts) (elem DeprWarn copts)
useDepr False False = False
useDepr True _ = True
-- FIXME: print a warning message below but succeed
useDepr False True = False
nubnames [] = []
nubnames (f@(x,(ty,opts)):xs) | (x,ty) `elem` (map getpair xs) = nubnames xs
| otherwise = f:(nubnames xs)
getpair (a,(b,c)) = (a,b)
tymatch ty xs = case filter (matchesty ty) xs of
[] -> xs
x -> x
matchesty (Just (Fn _ args _)) (x, ((Fn _ args2 _), opts))
| (length args) <= (length args2) = and $ zipWith matchArgs args args2
| otherwise = False
matchesty _ _ = True
matchArgs x y | x == y = True
matchArgs (TyVar _) _ = True
matchArgs _ (TyVar _) = True
matchArgs (Array x) (Array y) = matchArgs x y
matchArgs (TyApp t ts) (TyApp u us) = matchArgs t u &&
(and $ zipWith matchArgs ts us)
matchArgs (Fn _ args1 _) (Fn _ args2 _)
= (length args1 == length args2) &&
and (zipWith matchArgs args1 args2)
matchArgs _ _ = False
-- A private name in the current module is accessible
accessible ((NS nmod _),_) | nmod == mod = True
accessible (_,(_,fopts)) = elem Public fopts
showthings xs = showStrs (sort $ map showsig xs)
showsig (x,(ty,_)) = showuser x ++ "(" ++ showargs ty ++ ")"
showargs (Fn _ args _) = showlist args
showargs _ = ""
showStrs [] = ""
showStrs [x] = x
showStrs (x:xs) = x ++ ", " ++ showStrs xs
------------ Gadgets -------------
-- Return whether one type is "smaller" than another
-- X < Y if there is a (meaningful?) injection from X to Y.
-- There'll be a better way, if this table gets much bigger.
-- Should these be in a class PartialOrd?
tlt :: PrimType -> PrimType -> Bool
tlt Boolean Number = True
tlt Boolean StringType = True
tlt Character Number = True
tlt Character StringType = True
tlt Number RealNum = True
tlt Number StringType = True
tlt RealNum StringType = True
tlt _ _ = False
biggert :: Type -> Type -> Type
biggert (Prim x) (Prim y) | x `tlt` y = (Prim y)
biggert x y = x
mangling :: Type -> String
mangling t = "_" ++ mangling' t
mangling' (Fn _ args _) = "F" ++ concat (map mangling' args)
mangling' (Array arg) = "a" ++ mangling' arg
mangling' (User n) = show n
mangling' (TyApp n args) = mangling' n ++ concat (map mangling' args)
mangling' (TyVar _) = "P"
mangling' (Prim Number) = "i"
mangling' (Prim Character) = "c"
mangling' (Prim Boolean) = "b"
mangling' (Prim RealNum) = "f"
mangling' (Prim StringType) = "s"
mangling' (Prim Pointer) = "p"
mangling' (Prim Exception) = "e"
mangling' (Prim Void) = "v"
mangling' _ = ""
-- Get all of the type variables out of a type.
getTyVars :: Type -> [Name]
getTyVars (TyVar n) = [n]
getTyVars (TyApp f tys) = concat (map getTyVars (f:tys))
getTyVars (Array t) = getTyVars t
getTyVars (Fn _ tys t) = concat (map getTyVars tys) ++ getTyVars t
getTyVars _ = []
-- C Names need to be mangled with the type, for disambiguation of overloaded
-- functions
type Mangled = String
cname :: Name -> String -> Mangled
cname n mangle = show n ++ mangle
convert :: Type -> Type -> Bool
convert = (==)
checkConv :: Monad m => Type -> Type -> String -> m ()
checkConv x y err = if convert x y
then return ()
else fail err
getType :: Monad m => Name -> [(Name,b)] -> m b
getType n ctxt = case (lookup n ctxt) of
Nothing -> fail $ "Unknown name gettype " ++ show n
(Just t) -> return t
getVars :: Type -> [Name]
getVars = nub.gv
where gv (Fn ns ts t) = concat (map gv (t:ts))
gv (Array t) = gv t
gv (TyApp n ts) = concat (map gv (n:ts))
gv (TyVar n) = [n]
gv _ = []
numargs :: Type -> Int
numargs (Fn ns ts t) = length ts
numargs _ = 0
-- Give distinct type variables fresh names, so that independent variables
-- continue to be independent.
-- Okay, so this really ought to be called 'generalise', like in Algorithm W
-- for Hindley Milner inference. I couldn't remember the name at the time...
fudgevars :: Type -> Int -> (Type, Int)
fudgevars t next = let (vsmap,next') = newnames next (getUserVars t) in
(alpha vsmap t, next')
where newnames n [] = ([],n)
newnames n (x:xs) = let (xsih,n') = newnames (n+1) xs in
((x,MN ("TV",n)):xsih, n')
alpha vsmap (Prim x) = Prim x
alpha vsmap (Fn ns tys t) = Fn ns (map (alpha vsmap) tys)
(alpha vsmap t)
alpha vsmap (Array t) = Array (alpha vsmap t)
alpha vsmap (User n) = User n
alpha vsmap (TyApp n tys) = tyapp (alpha vsmap n)
(map (alpha vsmap) tys)
-- alpha vsmap (Syn n) = Syn n
alpha vsmap (TyVar x) = case lookup x vsmap of
Nothing -> TyVar x
(Just v) -> TyVar v
alpha vsmap UnknownType = UnknownType
getUserVars :: Type -> [Name]
getUserVars = nub.gv
where gv (Fn ns ts t) = concat (map gv (t:ts))
gv (Array t) = gv t
gv (TyApp n ts) = concat (map gv (n:ts))
-- Actually it needs to be every variable so that constants get their
-- types inferred and generalised correctly - it was a faulty assumption
-- that all global names would have user defined type variables!
-- gv (TyVar (UN n)) = [UN n]
gv (TyVar x) = [x]
gv _ = []
lvaltoexp :: RAssign -> Raw
lvaltoexp (RAName f l n) = RVar f l n
lvaltoexp (RAIndex f l lv r) = RIndex f l (lvaltoexp lv) r
lvaltoexp (RAField f l lv r) = RField f l (lvaltoexp lv) r
-- Lookup in the type context (ignores namespace if no ambiguity, returns
-- fully qualified type name)
typelookup :: Name -> -- Current module
Name -> Types -> Lookup (Name, TypeInfo)
typelookup mod t ti = returnName (nubnames (lookupname mod t ti))
where returnName [x] = Got x
returnName [] = UnknownName t
--fail $ "Unknown type " ++ show t
returnName xs = Ambiguous t (map fst xs)
--fail $ "Ambiguous type name " ++ showuser t ++
-- " (found " ++ showthings xs ++ ")"
showthings [] = ""
showthings [(x,_)] = showuser x
showthings ((x,_):xs) = showuser x ++ ", " ++ showthings xs
nubnames [] = []
nubnames (f@(x,_):xs) | x `elem` (map fst xs) = nubnames xs
| otherwise = f:(nubnames xs)
-- Lookup in the exception context (ignores namespace if no ambiguity, returns
-- fully qualified type name)
exceptlookup :: Name -> -- Current module
Name -> EContext -> Lookup (Name, [Type])
exceptlookup mod e ei = returnName (nubnames (lookupname mod e ei))
where returnName [x] = Got x
returnName [] = UnknownName e
--fail $ "Unknown type " ++ show t
returnName xs = Ambiguous e (map fst xs)
-- Type normalisation; expand synonyms.
tyapp u [] = u
tyapp u ts = TyApp u ts
normalise :: Monad m =>
Bool -> -- Unknown types should cause an error
String -> Int -> Name -> Types -> Type -> m Type
normalise unk f l mod ti t = tn True [] t
where
tn top u (Fn ds ts t)
= do ts' <- mapM (tn top u) ts
t' <- tn top u t
return $ Fn ds ts' t'
tn top u (Array t) = do t' <- tn top u t
return $ Array t'
tn top u t@(User n) =
case typelookup mod n ti of
un@(UnknownName _) ->
if unk
then fail $ f ++ ":" ++ show l ++ ":" ++ show un
else return $ User (fixup mod n)
am@(Ambiguous n xs) -> fail $ f ++ ":" ++ show l ++ ":" ++ show am
(Got (fqn, x)) -> applyTI top u fqn [] x
tn top u (TyApp (User n) []) = tn top u (User n)
tn top u t@(TyApp (User n) ts) =
case typelookup mod n ti of
un@(UnknownName _) ->
do ts' <- mapM (tn False u) ts
return $ tyapp (User (fixup mod n)) ts'
am@(Ambiguous n xs) -> fail $ f ++ ":" ++ show l ++ ":" ++ show am
(Got (fqn, x)) -> applyTI top u fqn ts x
tn top u (TyApp n ts) =
do ts' <- mapM (tn top u) ts
n' <- tn top u n
return $ tyapp n' ts'
tn top u rest = return rest
fixup m fqn@(NS _ _) = fqn
fixup m n = (NS m n)
-- fixup m n = n
applyTI top u n ts (UserData as)
| top && length ts < length as
= fail $ f ++ ":" ++ show l ++ ":" ++
"Type " ++ showuser n ++ " has too few parameters"
| top && length ts > length as
= fail $ f ++ ":" ++ show l ++ ":" ++
"Type " ++ showuser n ++ " has too many parameters"
| otherwise = do ts' <- mapM (tn False u) ts
return $ tyapp (User n) ts'
-- Replace type with 't', replacing instances of as inside t with
-- corresponding instances of ts.
-- That probably makes no sense.
applyTI top u n ts (Syn as t)
| length ts < length as
= fail $ f ++ ":" ++ show l ++ ":" ++
"Type synonym " ++ showuser n ++ " has too few parameters"
| length ts > length as
= fail $ f ++ ":" ++ show l ++ ":" ++
"Type synonym " ++ showuser n ++ " has too many parameters"
| otherwise = if elem n u
then fail $ f ++ ":" ++ show l ++ ":" ++
"Cycle in type synonyms " ++
showsyns u
else do st <- substty (zip as ts) t
tn top (n:u) st
where showsyns [n] = showuser n
showsyns (n:ns) = showuser n ++ ", " ++ showsyns ns
applyTI top u n ts Private = fail $ f ++ ":" ++ show l ++
"Can't use private type " ++ showuser n
substty tmap (TyVar n) = case lookup n tmap of
Nothing -> fail $ "Shouldn't happen" ++ show tmap
(Just t) -> return t
substty tmap (Array t) = do t' <- substty tmap t
return $ Array t'
substty tmap (Fn ds as r) = do as' <- mapM (substty tmap) as
r' <- substty tmap r
return $ Fn ds as' r'
substty tmap (TyApp n ts) = do ts' <- mapM (substty tmap) ts
n' <- substty tmap n
return $ tyapp n' ts'
substty _ rest = return rest
-- Fold constants in a raw term
-- TODO/FIXME: Check bounds?
cfold :: Raw -> Raw
cfold r@(RInfix f l op (RConst _ _ (Num x)) (RConst _ _ (Num y)))
= case (foldint op x y) of
Just c -> RConst f l c
Nothing -> r
cfold r@(RInfix f l op (RConst _ _ (Re x)) (RConst _ _ (Re y)))
= case (foldreal op x y) of
Just c -> RConst f l c
Nothing -> r
cfold r@(RUnary f l op (RConst _ _ (Num x)))
= case (foldunint op x) of
Just c -> RConst f l c
Nothing -> r
cfold r@(RUnary f l op (RConst _ _ (Re x)))
= case (foldunreal op x) of
Just c -> RConst f l c
Nothing -> r
cfold r = r
getConst (RConst _ _ c) = c
foldint :: Op -> Int -> Int -> Maybe Const
foldint Plus x y = Just $ Num (x+y)
foldint Minus x y = Just $ Num (x-y)
foldint Times x y = Just $ Num (x*y)
-- TODO: Should be compile time error
foldint Divide x 0 = Nothing
foldint Divide x y = Just $ Num (x `div` y)
foldint Modulo x y = Just $ Num (x `mod` y)
foldint Power x y = Just $ Num (floor ((fromIntegral x)**(fromIntegral y)))
foldint Equal x y = Just $ Bo (x==y)
foldint NEqual x y = Just $ Bo (x/=y)
foldint OpLT x y = Just $ Bo (x<y)
foldint OpGT x y = Just $ Bo (x>y)
foldint OpLE x y = Just $ Bo (x<=y)
foldint OpGE x y = Just $ Bo (x>=y)
foldint _ x y = Nothing
foldreal :: Op -> Double -> Double -> Maybe Const
foldreal Plus x y = Just $ Re (x+y)
foldreal Minus x y = Just $ Re (x-y)
foldreal Times x y = Just $ Re (x*y)
-- TODO: Should be compile time error
foldreal Divide x 0 = Nothing
foldreal Divide x y = Just $ Re (x/y)
foldreal Power x y = Just $ Re (x**y)
foldreal Equal x y = Just $ Bo (x==y)
foldreal NEqual x y = Just $ Bo (x/=y)
foldreal OpLT x y = Just $ Bo (x<y)
foldreal OpGT x y = Just $ Bo (x>y)
foldreal OpLE x y = Just $ Bo (x<=y)
foldreal OpGE x y = Just $ Bo (x>=y)
foldreal _ x y = Nothing
foldunint :: UnOp -> Int -> Maybe Const
foldunint Neg x = Just $ Num (-x)
foldunint _ _ = Nothing
foldunreal :: UnOp -> Double -> Maybe Const
foldunreal Neg x = Just $ Re (-x)
foldunreal _ _ = Nothing
-- compile time coercions (only do the ones which the type checker accepts)
mkInt :: Const -> Int
mkInt (Num x) = x
mkInt (Ch c) = fromEnum c
mkInt (Bo False) = 0
mkInt (Bo True) = 1
mkInt (Re x) = fromEnum x
mkInt (Str str) = read str
mkInt e = error $ "This can't happen: mkInt " ++ show e ++ " - please report"
mkFloat :: Const -> Double
mkFloat (Num x) = toEnum x
mkFloat (Ch c) = toEnum (fromEnum c)
mkFloat (Bo False) = 0.0
mkFloat (Bo True) = 1.0
mkFloat (Re x) = x
mkFloat (Str str) = read str
mkFloat e
= error $ "This can't happen: mkFloat " ++ show e ++ " - please report"
-- Apply a function (non-recursively) to every sub expression,
-- applying a different function to metavariables
-- (I don't know if this is actually that useful, but it is used by the
-- optimiser...)
mapsubexpr f mf expr = app expr
where app (Metavar fl l x) = mf fl l x
app (Lambda ivs args e) = Lambda ivs args (f e)
app (Closure args t e) = Closure args t (f e)
app (Bind n ty e1 e2) = Bind n ty (f e1) (f e2)
app (Declare fn l n t e) = Declare fn l n t (f e)
app (Return e) = Return (f e)
app (Assign a e) = Assign (aapply a) (f e)
app (AssignOp op a e) = AssignOp op (aapply a) (f e)
app (Seq a b) = Seq (f a) (f b)
app (Apply fn as) = Apply (f fn) (applys as)
app (ConApply fn as) = ConApply (f fn) (applys as)
app (Partial b fn as i) = Partial b (f fn) (applys as) i
app (Foreign ty n es) = Foreign ty n
(zip (applys (map fst es)) (map snd es))
app (While e b) = While (f e) (f b)
app (DoWhile e b) = DoWhile (f e) (f b)
app (For i nm j a e1 e2) = For i nm j (aapply a) (f e1) (f e2)
app (TryCatch t e fl fin) = TryCatch (f t) (f e) (f fl) (f fin)
app (Throw e) = Throw (f e)
app (Except e i) = Except (f e) (f i)
app (Infix op x y) = Infix op (f x) (f y)
app (CmpStr op x y) = CmpStr op (f x) (f y)
app (CmpExcept op x y) = CmpExcept op (f x) (f y)
app (RealInfix op x y) = RealInfix op (f x) (f y)
app (Append x y) = Append (f x) (f y)
app (AppendChain xs) = AppendChain (applys xs)
app (Unary op x) = Unary op (f x)
app (RealUnary op x) = RealUnary op (f x)
app (Coerce t1 t2 x) = Coerce t1 t2 (f x)
app (Case e as) = Case (f e) (altapp as)
app (If a t e) = If (f a) (f t) (f e)
app (Index a b) = Index (f a) (f b)
app (Field e n i j) = Field (f e) n i j
app (ArrayInit as) = ArrayInit (applys as)
app (Annotation a e) = Annotation a (f e)
app (Length s) = Length (f s)
app x = x
aapply (AIndex a e) = AIndex (aapply a) (f e)
aapply (AField a n i j) = AField (aapply a) n i j
aapply x = x
applys [] = []
applys (x:xs) = (f x) : (applys xs)
altapp [] = []
altapp ((Alt i j es e):as)
= (Alt i j (applys es) (f e)):(altapp as)
altapp ((ArrayAlt es e):as)
= (ArrayAlt (applys es) (f e)):(altapp as)
altapp ((Default e):as)
= (Default (f e)):(altapp as)
altapp ((ConstAlt pt c e):as)
= (ConstAlt pt c (f e)):(altapp as)
-- Fold a function across all sub expressions.
-- Applies 'f' to the subexpression, and uses 'com' to combine the
-- result across all sub expressions.
foldsubexpr :: (Expr n -> a) -> (a -> a -> a) -> a -> Expr n -> a
foldsubexpr f com def expr = app expr
where app (Lambda ivs args e) = f e
app (Closure args t e) = f e
app (Bind n ty e1 e2) = (f e1) `com` (f e2)
app (Declare fn l n t e) = (f e)
app (Return e) = (f e)
app (Assign a e) = (aapply a) `com` (f e)
app (AssignOp op a e) = (aapply a) `com` (f e)
app (Seq a b) = (f a) `com` (f b)
app (Apply fn as) = (f fn) `com` (applys as)
app (ConApply fn as) = (f fn) `com` (applys as)
app (Partial b fn as i) = (f fn) `com` (applys as)
app (Foreign ty n es) = applys (map fst es)
app (While e b) = (f e) `com` (f b)
app (DoWhile e b) = (f e) `com` (f b)
app (For i nm j a e1 e2) = (aapply a) `com` (f e1) `com` (f e2)
app (TryCatch t e fl fin) = (f t) `com` (f e) `com`
(f fl) `com` (f fin)
app (Throw e) = (f e)
app (Except e i) = (f e) `com` (f i)
app (Infix op x y) = (f x) `com` (f y)
app (CmpStr op x y) = (f x) `com` (f y)
app (CmpExcept op x y) = (f x) `com` (f y)
app (RealInfix op x y) = (f x) `com` (f y)
app (Append x y) = (f x) `com` (f y)
app (Unary op x) = (f x)
app (RealUnary op x) = (f x)
app (Coerce t1 t2 x) = (f x)
app (Case e as) = (f e) `com` (altapp as)
app (If a t e) = (f a) `com` (f t) `com` (f e)
app (Index a b) = (f a) `com` (f b)
app (Field e n i j) = (f e)
app (ArrayInit as) = (applys as)
app (Annotation a e) = (f e)
app x = def
aapply (AIndex a e) = (aapply a) `com` (f e)
aapply (AField a n i j) = (aapply a)
aapply x = def
applys [] = def
applys (x:xs) = (f x) `com` (applys xs)
altapp [] = def
altapp ((Alt i j es e):as)
= (applys es) `com` (f e) `com` (altapp as)
altapp ((ArrayAlt es e):as)
= (applys es) `com` (f e) `com` (altapp as)
altapp ((Default e):as)
= (f e) `com` (altapp as)
altapp ((ConstAlt pt c e):as)
= (f e) `com` (altapp as)
locsUsed :: Expr n -> [Int]
locsUsed (Loc i) = [i]
locsUsed (Lambda _ _ e) = locsUsed e
locsUsed (Closure _ _ e) = locsUsed e
locsUsed (Bind _ _ e1 e2) = locsUsed e1 ++ locsUsed e2
locsUsed (Declare _ _ _ _ e) = locsUsed e
locsUsed (Return e) = locsUsed e
locsUsed (Assign a e) = alocsUsed a ++ locsUsed e
locsUsed (AssignOp _ a e) = alocsUsed a ++ locsUsed e
locsUsed (AssignApp a e) = alocsUsed a ++ locsUsed e
locsUsed (Seq x y) = locsUsed x ++ locsUsed y
locsUsed (Apply f as) = locsUsed f ++ concat (map locsUsed as)
locsUsed (ConApply f as) = locsUsed f ++ concat (map locsUsed as)
locsUsed (Partial b f as _) = locsUsed f ++ concat (map locsUsed as)
locsUsed (Foreign _ _ as) = concat (map locsUsed (map fst as))
locsUsed (While x y) = locsUsed x ++ locsUsed y
locsUsed (DoWhile x y) = locsUsed x ++ locsUsed y
locsUsed (For _ _ _ a x y) = alocsUsed a ++ locsUsed x ++ locsUsed y
locsUsed (TryCatch x y z w) = locsUsed x ++ locsUsed y ++
locsUsed z ++ locsUsed w
locsUsed (NewTryCatch x c) = locsUsed x ++ concat (map clocsUsed c)
locsUsed (Throw x) = locsUsed x
locsUsed (Except x y) = locsUsed x ++ locsUsed y
locsUsed (NewExcept xs) = concat (map locsUsed xs)
locsUsed (Infix _ x y) = locsUsed x ++ locsUsed y
locsUsed (RealInfix _ x y) = locsUsed x ++ locsUsed y
locsUsed (CmpExcept _ x y) = locsUsed x ++ locsUsed y
locsUsed (CmpStr _ x y) = locsUsed x ++ locsUsed y
locsUsed (Append x y) = locsUsed x ++ locsUsed y
locsUsed (AppendChain xs) = concat (map locsUsed xs)
locsUsed (Unary _ x) = locsUsed x
locsUsed (RealUnary _ x) = locsUsed x
locsUsed (Coerce _ _ x) = locsUsed x
locsUsed (Case e cs) = locsUsed e ++ concat (map caseLocsUsed cs)
locsUsed (If t x y) = locsUsed t ++ locsUsed x ++ locsUsed y
locsUsed (Index x y) = locsUsed x ++ locsUsed y
locsUsed (Field e _ _ _) = locsUsed e
locsUsed (ArrayInit xs) = concat (map locsUsed xs)
locsUsed (Annotation _ e) = locsUsed e
locsUsed _ = []
alocsUsed (AIndex a e) = alocsUsed a ++ locsUsed e
alocsUsed (AField a _ _ _) = alocsUsed a
alocsUsed _ = []
clocsUsed (Catch (Right e) h) = locsUsed e ++ locsUsed h
clocsUsed (Catch (Left (n,es)) h) = concat (map locsUsed es) ++ locsUsed h
caseLocsUsed (Default e) = locsUsed e
caseLocsUsed (Alt _ _ es e) = concat (map locsUsed es) ++ locsUsed e
caseLocsUsed (ArrayAlt es e) = concat (map locsUsed es) ++ locsUsed e
caseLocsUsed (ConstAlt _ _ e) = locsUsed e
-- get a list of all variables which are modified (i.e. assigned to,
-- or passed to a function as a var argument) in a block
modified expr = modVar expr -- foldsubexpr modVar (++) [] expr
modVar :: Expr n -> [Int]
modVar (Lambda _ _ e) = modVar e
modVar (Closure _ _ e) = modVar e
modVar (Bind _ _ v e) = modVar v ++ modVar e
modVar (Declare _ _ _ _ e) = modVar e
modVar (Assign lval ex) = inLval lval ++ modVar ex
modVar (AssignOp _ lval ex) = inLval lval ++ modVar ex
modVar (AssignApp lval ex) = inLval lval ++ modVar ex
modVar (Seq x y) = modVar x ++ modVar y
modVar (Annotation a e) = modVar e
modVar (For _ _ _ l a b) = inLval l ++ modVar b ++ modVar a
modVar (While t e) = modVar t ++ modVar e
modVar (DoWhile e t) = modVar t ++ modVar e
modVar (NewExcept es) = concat (map modVar es)
modVar (Except e t) = modVar t ++ modVar e
modVar (Infix _ x y) = modVar x ++ modVar y
modVar (RealInfix _ x y) = modVar x ++ modVar y
modVar (Unary _ x) = modVar x
modVar (RealUnary _ x) = modVar x
modVar (Coerce _ _ e) = modVar e
modVar (Index x y) = modVar x ++ modVar y
modVar (Field x _ _ _) = modVar x
modVar (ArrayInit es) = concat (map modVar es)
modVar (NewTryCatch e cs) = modVar e ++ concat (map cmodVar cs)
-- This ought to check if the arg is a var arg.
modVar (Apply _ args) = concat (map locsUsed args)
modVar (ConApply _ args) = concat (map locsUsed args)
-- May be over conservative, but unlikely to happen much in practice.
modVar (Partial _ _ args _) = concat (map locsUsed args)
modVar (Foreign _ _ args) = concat (map locsUsed (map fst args))
modVar (Case e alts) = modVar e ++ concat (map inAlt alts)
modVar (If x t e) = modVar x ++ modVar t ++ modVar e
modVar (Return e) = modVar e
modVar (Throw e) = modVar e
modVar x = []
isArg (Loc i) = [i]
isArg _ = []
inAlt (Alt _ _ args e) = modVar e ++ concat (map isArg args)
inAlt (ArrayAlt args e) = modVar e ++ concat (map isArg args)
inAlt (ConstAlt _ _ e) = modVar e
inAlt (Default e) = modVar e
inLval (AName i) = [i]
inLval (AIndex lval _) = inLval lval
inLval (AField lval _ _ _) = inLval lval
inLval _ = []
cmodVar (Catch (Right nm) e) = modVar nm ++ modVar e
cmodVar (Catch (Left (_,es)) e) = concat (map modVar es) ++ modVar e
-- Functions which the compiler assumes to exist
eqfun = NS (UN "Builtins") (UN "equal")
eqmangle = mangling (Fn [] [TyVar (UN "a"), TyVar (UN "a")] (Prim Boolean))
sizefn = NS (UN "Builtins") (UN "size")
sizemangle = mangling (Fn [] [Array (TyVar (UN "a"))] (Prim Number))
missingCase = NS (UN "Builtins") (UN "Missing_Case")
missingCaseMangling = mangling (Fn [] [] (Prim Exception));
pmAssignFail = NS (UN "Builtins") (UN "Pattern_Matching_Assignment_Failure")
pmAssignFailMangling = mangling (Fn [] [] (Prim Exception));
exitfun = (NS (UN "Builtins") (UN "exit"))
exitmangle = mangling (Fn [] [(Prim Number)] (Prim Void))
pushfun = (NS (UN "Array") (UN "push"))
putstrlnfun = (NS (UN "Prelude") (UN "putStrLn"))
putstrlnmangle = mangling (Fn [] [(Prim StringType)] (Prim Void))
backtracefun = (NS (UN "Builtins") (UN "exceptionBacktrace"))
backtracemangle = mangling (Fn [] [(Prim Exception)] (Prim Void))
tappFun = (NS (UN "Multicore") (UN "tapply"))
tappMangle i = mangling (Fn [] (tappArgs 0 i) (TyVar (UN "a")))
where tappArgs i num
| i == num = []
| otherwise = (TyVar (UN ("a"++show i))):(tappArgs (i+1) num)
texecFun = (NS (UN "Multicore") (UN "texec"))
texecMangle i = mangling (Fn [] (tappArgs 0 i) (Prim Void))
where tappArgs i num
| i == num = []
| otherwise = (TyVar (UN ("a"++show i))):(tappArgs (i+1) num)
dumpFun = (NS (UN "Reflect") (UN "dump"))
dumpMangle = mangling (Fn [] [(TyVar (UN "a"))] (Prim Void))
|