File: lazylam.k

package info (click to toggle)
kaya 0.4.2-4
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 4,448 kB
  • ctags: 1,694
  • sloc: cpp: 9,536; haskell: 7,461; sh: 3,013; yacc: 910; makefile: 816; perl: 90
file content (136 lines) | stat: -rw-r--r-- 3,324 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
program lazylam; // -*-C-*-ish

/* [Unfinished] evaluator for the untyped lambda calculus with integers,
   lazy version. */

// Raw values
data Expr = Var(Int x) // de Bruijn indexed variable
     | Lam(Expr scope) // Binding
     | App(Expr f, Expr s) // Function application
     | Const(Int val)
     | Inc(Expr ni)
     | Dec(Expr nd)
     | PrimRec(Expr target,Expr mzero,Expr msuc)
     | If(Expr i, Expr t, Expr e);

// Semantic representation of values. Difference from eager version is
// that each recursive value is a suspension - Sem() rather than Sem.
// We only evaluate these when we need them
data Sem = SemLam(Sem(Sem()) scope)
     | SemConst(Int val)
     | SemPrimRec(Sem() target, Sem() mzero, Sem() msuc)
     | SemInc(Sem() ni)
     | SemDec(Sem() nd)
     | Blocked(Blocked f, [Sem()] args);

// Irreducible terms
data Blocked = BVar(Int x);

data Spine<a> = Lin | Snoc(Spine<a> init, a last);

type Ctxt = Spine<Sem()>;

Exception FellOffEndOfContext;

Sem lookup(Int v, Ctxt ctxt)
{
    if (v==0) {
	return force(ctxt.last); // Evaluate it
    } else if (v>0) {
	return lookup(v-1,ctxt.init);
    } else {
	throw(FellOffEndOfContext);
    }
}

Sem eval(Ctxt ctxt, Expr e)
{
    case e of {
	Var(v) -> return lookup(v,ctxt);
	| Lam(sc) -> return SemLam(lambda(arg) -> { eval(Snoc(ctxt,@arg),sc) });
	| App(f,a) -> return app(ctxt,eval@(ctxt,f),eval@(ctxt,a));
	| Const(c) -> return SemConst(c);
	| Inc(n) -> return increment(eval(ctxt,n));
	| Dec(n) -> return decrement(eval(ctxt,n));
	| PrimRec(t,z,s) -> 
	      return primrec(ctxt, eval@(ctxt,t),eval@(ctxt,z),eval@(ctxt,s));
	| If(i,t,e) -> 
	      return runIf(ctxt, eval@(ctxt,i),eval@(ctxt,t),eval@(ctxt,e));
    }
}

Sem app(Ctxt ctxt, Sem() f, Sem() a)
{
    case f of { // Evaluate f
	SemLam(scfun) -> return scfun(@a);
    }
}

Sem increment(Sem n)
{
    case n of {
	SemConst(c) -> return (SemConst(c+1));
    }
}

Sem decrement(Sem n)
{
    case n of {
	SemConst(c) -> return (SemConst(c-1));
    }
}

Sem primrec(Ctxt ctxt, Sem() t, Sem() z, Sem() s)
{
    case t of { // Evaluate t
	SemConst(x) -> 
	    if (x==0) { 
		return z; // Evaluate z
	    } 
	    else 
	    { 
		dec = SemConst@(x-1);
		rec = primrec@(ctxt,dec,@z,@s);
		return app(ctxt,app@(ctxt,@s,@dec),@rec);
	    }
    }
}

Sem runIf(Ctxt ctxt, Sem() i, Sem() t, Sem() e)
{
    case i of { // Evaluate i, then t or e, but not both.
	SemConst(x) -> if (x!=0) { return t; } else { return e; }
    }
}

Void showSem(Sem v)
{
    case v of {
	SemConst(x) -> putStrLn(String(x));
    }
}

Void main()
{
    // plus = \m n. primrec n m (\k ih. inc(ih))
    plus = Lam(Lam(PrimRec(Var(0),Var(1),
			   Lam(Lam(Inc(Var(0)))))));
    // mult = \m n. primrec n 0 (\k ih. plus m ih)
    mult = Lam(Lam(PrimRec(Var(0),Const(0),
			   Lam(Lam(App(App(plus,Var(3)),Var(0)))))));

    // Wow, this works when we evaluate lazily!
    // y = \f . (\x. f (x x)) (\x. f (x x))

    y = Lam(App(Lam(App(Var(1),App(Var(0),Var(0)))),
		Lam(App(Var(1),App(Var(0),Var(0))))));

    // add4 = \x. y (\add4 x. if x==0 then 4 else 1+(add4 (x-1))) x

    addbody = Lam(Lam(If(Var(0),Inc(App(Var(1),(Dec(Var(0))))),Const(4))));
    add4 = Lam(App(App(y,addbody),Var(0)));

    showSem(eval(Lin,App(App(mult, Const(6)),Const(7))));
    // Wow, it works!
    showSem(eval(Lin,App(add4,Const(3))));
}