1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
|
program lam; // -*-C-*-ish
/* [Unfinished] evaluator for the untyped lambda calculus with integers */
// Raw values
data Expr = Var(Int x) // de Bruijn indexed variable
| Lam(Expr scope) // Binding
| App(Expr f, Expr s) // Function application
| Const(Int val)
| Inc(Expr ni)
| Dec(Expr nd)
| PrimRec(Expr target,Expr mzero,Expr msuc)
| If(Expr i, Expr t, Expr e);
// Semantic representation of values
data Sem = SemLam(Sem(Sem) scope)
| SemConst(Int val)
| SemPrimRec(Sem target, Sem mzero, Sem msuc)
| SemInc(Sem ni)
| SemDec(Sem nd)
| Blocked(Blocked f, [Sem] args);
// Irreducible terms
data Blocked = BVar(Int x);
data Spine<a> = Lin | Snoc(Spine<a> init, a last);
type Ctxt = Spine<Sem>;
Exception FellOffEndOfContext;
Sem lookup(Int v, Ctxt ctxt)
{
if (v==0) {
return ctxt.last;
} else if (v>0) {
return lookup(v-1,ctxt.init);
} else {
throw(FellOffEndOfContext);
}
}
Sem eval(Ctxt ctxt, Expr e)
{
case e of {
Var(v) -> return lookup(v,ctxt);
| Lam(sc) -> return SemLam(lambda(arg) -> { eval(Snoc(ctxt,arg),sc) });
| App(f,a) -> return lam::apply(ctxt,eval(ctxt,f),eval(ctxt,a));
| Const(c) -> return SemConst(c);
| Inc(n) -> return increment(eval(ctxt,n));
| Dec(n) -> return decrement(eval(ctxt,n));
| PrimRec(t,z,s) ->
return primrec(ctxt, eval(ctxt,t),eval(ctxt,z),eval(ctxt,s));
| If(i,t,e) ->
return runIf(ctxt, eval(ctxt,i),eval(ctxt,t),eval(ctxt,e));
}
}
Sem apply(Ctxt ctxt, Sem f, Sem a)
{
case f of {
SemLam(scfun) -> return scfun(a);
}
}
Sem increment(Sem n)
{
case n of {
SemConst(c) -> return (SemConst(c+1));
}
}
Sem decrement(Sem n)
{
case n of {
SemConst(c) -> return (SemConst(c-1));
}
}
Sem primrec(Ctxt ctxt, Sem t, Sem z, Sem s)
{
case t of {
SemConst(x) ->
if (x==0) {
return z;
}
else
{
dec = SemConst(x-1);
rec = primrec(ctxt,dec,z,s);
return lam::apply(ctxt,lam::apply(ctxt,s,dec),rec);
}
}
}
Sem runIf(Ctxt ctxt, Sem i, Sem t, Sem e)
{
case i of {
SemConst(x) -> if (x!=0) { return t; } else { return e; }
}
}
Void showSem(Sem v)
{
case v of {
SemConst(x) -> putStrLn(String(x));
}
}
Void main()
{
// plus = \m n. primrec n m (\k ih. inc(ih))
plus = Lam(Lam(PrimRec(Var(0),Var(1),
Lam(Lam(Inc(Var(0)))))));
// mult = \m n. primrec n 0 (\k ih. plus m ih)
mult = Lam(Lam(PrimRec(Var(0),Const(0),
Lam(Lam(App(App(plus,Var(3)),Var(0)))))));
// This'll never work because we don't evaluate lazily...
// y = \f . (\x. f (x x)) (\x. f (x x))
y = Lam(App(Lam(App(Var(1),App(Var(0),Var(0)))),
Lam(App(Var(1),App(Var(0),Var(0))))));
// add4 = \x. y (\add4 x. if x==0 then 4 else 1+(add4 (x-1))) x
addbody = Lam(Lam(If(Var(0),Inc(App(Var(1),(Dec(Var(0))))),Const(4))));
add4 = Lam(App(App(y,addbody),Var(0)));
showSem(eval(Lin,App(App(mult, Const(6)),Const(7))));
//showSem(eval(Lin,App(add4,Const(3))));
}
|