File: collector.cpp

package info (click to toggle)
kde4libs 4%3A4.14.26-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 83,084 kB
  • ctags: 99,791
  • sloc: cpp: 763,588; xml: 12,007; ansic: 5,224; java: 4,060; perl: 2,938; yacc: 2,484; python: 1,219; sh: 1,174; ruby: 337; lex: 278; makefile: 32
file content (938 lines) | stat: -rw-r--r-- 28,509 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
// -*- mode: c++; c-basic-offset: 4 -*-
/*
 *  This file is part of the KDE libraries
 *  Copyright (C) 2003, 2004, 2005, 2006, 2007 Apple Computer, Inc.
 *  Copyright (C) 2007 Eric Seidel <eric@webkit.org>
 *  Copyright (C) 2007 Maksim Orlovich <maksim@kde.org>
 *
 *  This library is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU Lesser General Public
 *  License as published by the Free Software Foundation; either
 *  version 2 of the License, or (at your option) any later version.
 *
 *  This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *  Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public
 *  License along with this library; if not, write to the Free Software
 *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 */

#include "collector.h"
#include <config-kjs.h>

#include <wtf/FastMalloc.h>
#include <wtf/HashCountedSet.h>
#include "internal.h"
#include "list.h"
#include "value.h"

#include <setjmp.h>
#include <limits.h>
#include <algorithm>

#if PLATFORM(DARWIN)

#include <pthread.h>
#include <mach/mach_port.h>
#include <mach/mach_init.h>
#include <mach/task.h>
#include <mach/thread_act.h>
#include <mach/vm_map.h>

#elif PLATFORM(WIN_OS) || COMPILER(CYGWIN)

#include <windows.h>
#include <winnt.h>

#elif PLATFORM(UNIX)

#include <stdlib.h>
#include <sys/types.h>
#include <sys/mman.h>
#include <pthread.h> //krazy:exclude=includes (yes, it's duplicate, but in a different #if branch)
#include <unistd.h>

#if PLATFORM(SOLARIS_OS)
#include <thread.h>
#include <signal.h>
using std::memset;
#endif

#if HAVE(PTHREAD_NP_H)
#include <pthread_np.h>
#endif

#endif

#define DEBUG_COLLECTOR 0

#if HAVE(VALGRIND_MEMCHECK_H) && !defined(NDEBUG)
   #include <valgrind/memcheck.h>
   #if defined(VALGRIND_MAKE_MEM_DEFINED)
      #define VG_DEFINED(p) VALGRIND_MAKE_MEM_DEFINED(&p, sizeof(void*))
   #else
      #define VG_DEFINED(p)
   #endif
#else
   #define VG_DEFINED(p)
#endif


using std::max;

namespace KJS {

// tunable parameters
const size_t SPARE_EMPTY_BLOCKS = 2;
const size_t MIN_ARRAY_SIZE = 14;
const size_t GROWTH_FACTOR = 2;
const size_t LOW_WATER_FACTOR = 4;
const size_t ALLOCATIONS_PER_COLLECTION = 4000;


// A whee bit like a WTF::Vector, but perfectly POD, so can be used in global context
// w/o worries.
struct BlockList {
    CollectorBlock** m_data;
    size_t m_used;
    size_t m_capacity;

    CollectorBlock* operator[](size_t pos) {
        return m_data[pos];
    }

    size_t used() const {
        return m_used;
    }

    void append(CollectorBlock* block) {
        if (m_used == m_capacity) {
            static const size_t maxNumBlocks = ULONG_MAX / sizeof(CollectorBlock*) / GROWTH_FACTOR;
            if (m_capacity > maxNumBlocks)
                CRASH();
            m_capacity = max(MIN_ARRAY_SIZE, m_capacity * GROWTH_FACTOR);
            m_data = static_cast<CollectorBlock **>(fastRealloc(m_data, m_capacity * sizeof(CollectorBlock *)));
        }
        m_data[m_used] = block;
        ++m_used;
    }

    void remove(CollectorBlock* block) {
        size_t c;
        for (c = 0; c < m_used; ++c)
            if (m_data[c] == block)
                break;

        if (c == m_used)
            return;

        // Move things up, and shrink..
        --m_used;
        for (; c < m_used; ++c)
            m_data[c] = m_data[c+1];
    }
};

struct CollectorHeap {
  // This contains the list of both normal and oversize blocks
  BlockList allBlocks;

  // Just the normal blocks
  BlockList blocks;

  size_t firstBlockWithPossibleSpace;

  // The oversize block handling is a bit tricky, since we do not wish to slow down
  // the usual paths. Hence, we do the following:
  // 1) We set the marked bits for any extension portions of the block.
  //    this way the stack GC doesn't have to do anything special if a pointer
  //    happens to go that way.
  // 2) We keep track of an allBlocks list to help the stack GC tests things.
  //
  // The oversize heap itself represents blocks as follows:
  // 1) free: marked = false, allocd = false, trailer = false, zeroIfFree = 0
  // 2) alloc'd, head: marked = depends, allocd = true, trailer = false, zeroIfFree is uncertain
  // 3) alloc'd, trailer: marked = true (see above), allocd = true, trailer = true, zeroIfFree is uncertain
  //
  // For now, we don't use a freelist, so performance may be quite bad if
  // this is used heavily; this is just because the cell does not have
  // back and forward links; which we need since we can pick a non-first cell
  // ### actually, it may be possible to shuffle the list. Not now, though
  BlockList oversizeBlocks;

  size_t numLiveObjects;
  size_t numLiveObjectsAtLastCollect;
  size_t extraCost;
};

static CollectorHeap heap;

bool Collector::memoryFull = false;

static CollectorBlock* allocateBlock()
{
#if PLATFORM(DARWIN)
    vm_address_t address = 0;
    vm_map(current_task(), &address, BLOCK_SIZE, BLOCK_OFFSET_MASK, VM_FLAGS_ANYWHERE, MEMORY_OBJECT_NULL, 0, FALSE, VM_PROT_DEFAULT, VM_PROT_DEFAULT, VM_INHERIT_DEFAULT);
#elif PLATFORM(WIN_OS) || COMPILER(CYGWIN)
     // windows virtual address granularity is naturally 64k
    LPVOID address = VirtualAlloc(NULL, BLOCK_SIZE, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
#elif HAVE(POSIX_MEMALIGN)
    void* address;
    posix_memalign(address, BLOCK_SIZE, BLOCK_SIZE);
    memset(reinterpret_cast<void*>(address), 0, BLOCK_SIZE);
#else
    static size_t pagesize = getpagesize();

    size_t extra = 0;
    if (BLOCK_SIZE > pagesize)
        extra = BLOCK_SIZE - pagesize;

    void* mmapResult = mmap(NULL, BLOCK_SIZE + extra, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, -1, 0);
    uintptr_t address = reinterpret_cast<uintptr_t>(mmapResult);

    size_t adjust = 0;
    if ((address & BLOCK_OFFSET_MASK) != 0)
        adjust = BLOCK_SIZE - (address & BLOCK_OFFSET_MASK);

    if (adjust > 0)
        munmap(reinterpret_cast<void*>(address), adjust);

    if (adjust < extra)
        munmap(reinterpret_cast<void*>(address + adjust + BLOCK_SIZE), extra - adjust);

    address += adjust;
    memset(reinterpret_cast<void*>(address), 0, BLOCK_SIZE);
#endif
    CollectorBlock* ptr = reinterpret_cast<CollectorBlock*>(address);
    heap.allBlocks.append(ptr); // Register with the heap
    return ptr;
}

static void freeBlock(CollectorBlock* block)
{
    // Unregister the block first
    heap.allBlocks.remove(block);

#if PLATFORM(DARWIN)
    vm_deallocate(current_task(), reinterpret_cast<vm_address_t>(block), BLOCK_SIZE);
#elif PLATFORM(WIN_OS) || COMPILER(CYGWIN)
    VirtualFree(block, BLOCK_SIZE, MEM_RELEASE);
#elif HAVE(POSIX_MEMALIGN)
    free(block);
#else
    munmap(block, BLOCK_SIZE);
#endif
}

void Collector::recordExtraCost(size_t cost)
{
    // Our frequency of garbage collection tries to balance memory use against speed
    // by collecting based on the number of newly created values. However, for values
    // that hold on to a great deal of memory that's not in the form of other JS values,
    // that is not good enough - in some cases a lot of those objects can pile up and
    // use crazy amounts of memory without a GC happening. So we track these extra
    // memory costs. Only unusually large objects are noted, and we only keep track
    // of this extra cost until the next GC. In garbage collected languages, most values
    // are either very short lived temporaries, or have extremely long lifetimes. So
    // if a large value survives one garbage collection, there is not much point to
    // collecting more frequently as long as it stays alive.

    heap.extraCost += cost;
}

static void* allocOversize(size_t s)
{
  size_t cellsNeeded = (s + (CELL_SIZE - 1)) / CELL_SIZE;

  // printf("allocOversize, size:%d, cellsNeeded:%d\n", s, cellsNeeded);

  // We are not oversize enough to deal with things close to 64K in size
  assert(cellsNeeded <= CELLS_PER_BLOCK);

  // Look through the blocks, see if one has enough, and where.
  CollectorBlock* sufficientBlock = 0;
  size_t startOffset = -1;
  for (size_t b = 0; b < heap.oversizeBlocks.used() && !sufficientBlock; ++b) {
    CollectorBlock* candidate = heap.oversizeBlocks[b];
    if (cellsNeeded <= CELLS_PER_BLOCK - candidate->usedCells) {
      // Well, there is a chance we will fit.. Let's see if we can find a batch long enough..
      for (size_t i = 0; i < CELLS_PER_BLOCK; i++) {
        if (i % 32 == 0 && candidate->allocd.bits[i/32] == 0xFFFFFFFF) {
          // Can skip this and 31 other cells
          i += 31;
          continue;
        }

        if (candidate->allocd.get(i))
            continue;

        // This cell is free -- are there enough free cells after it?
        startOffset = i;
        size_t last = i + cellsNeeded - 1;

        if (last >= CELLS_PER_BLOCK) // No way it will fit
          break;

        ++i;
        while (i <= last && !candidate->allocd.get(i))
          ++i;

        // Did we get through enough?
        if (i == last + 1) {
          sufficientBlock = candidate;
          break;
        }

        // Not enough room -- and the current entry has a non-zero zeroIfFree,
        // so we should go on at i + 1 on next iteration

      } // for each cell per block.
    } // if enough room in block
  } // for each block

  if (!sufficientBlock) {
    sufficientBlock = allocateBlock();
    startOffset     = 0;
    heap.oversizeBlocks.append(sufficientBlock);
  }

  sufficientBlock->usedCells += cellsNeeded;

  // Set proper bits for trailers and the head
  sufficientBlock->allocd.set(startOffset);
  for (size_t t = startOffset + 1; t < startOffset + cellsNeeded; ++t) {
    sufficientBlock->trailer.set(t);
    sufficientBlock->marked.set(t);
    sufficientBlock->allocd.set(t);
  }

  void* result = sufficientBlock->cells + startOffset;
  memset(result, 0, s);
  heap.numLiveObjects = heap.numLiveObjects + 1;
  return result;
}

void* Collector::allocate(size_t s)
{
  assert(JSLock::lockCount() > 0);

  // collect if needed
  size_t numLiveObjects = heap.numLiveObjects;
  size_t numLiveObjectsAtLastCollect = heap.numLiveObjectsAtLastCollect;
  size_t numNewObjects = numLiveObjects - numLiveObjectsAtLastCollect;
  size_t newCost = numNewObjects + heap.extraCost;

  if (newCost >= ALLOCATIONS_PER_COLLECTION && newCost >= numLiveObjectsAtLastCollect) {
    collect();
    numLiveObjects = heap.numLiveObjects;
  }

  if (s > CELL_SIZE) {
    return allocOversize(s);
  }

  // slab allocator

  size_t usedBlocks = heap.blocks.used();

  size_t i = heap.firstBlockWithPossibleSpace;
  CollectorBlock *targetBlock;
  size_t targetBlockUsedCells;
  if (i != usedBlocks) {
    targetBlock = heap.blocks[i];
    targetBlockUsedCells = targetBlock->usedCells;
    assert(targetBlockUsedCells <= CELLS_PER_BLOCK);
    while (targetBlockUsedCells == CELLS_PER_BLOCK) {
      if (++i == usedBlocks)
        goto allocateNewBlock;
      targetBlock = heap.blocks[i];
      targetBlockUsedCells = targetBlock->usedCells;
      assert(targetBlockUsedCells <= CELLS_PER_BLOCK);
    }
    heap.firstBlockWithPossibleSpace = i;
  } else {
allocateNewBlock:
    // didn't find one, need to allocate a new block
    targetBlock = allocateBlock();
    targetBlock->freeList = targetBlock->cells;
    targetBlockUsedCells = 0;
    heap.blocks.append(targetBlock);
    heap.firstBlockWithPossibleSpace = usedBlocks; // previous usedBlocks -> new one's index
  }

  // find a free spot in the block and detach it from the free list
  CollectorCell *newCell = targetBlock->freeList;

  // "next" field is a byte offset -- 0 means next cell, so a zeroed block is already initialized
  // could avoid the casts by using a cell offset, but this avoids a relatively-slow multiply
  targetBlock->freeList = reinterpret_cast<CollectorCell *>(reinterpret_cast<char *>(newCell + 1) + newCell->u.freeCell.next);

  targetBlock->usedCells = targetBlockUsedCells + 1;
  heap.numLiveObjects = numLiveObjects + 1;

  return newCell;
}

#if USE(MULTIPLE_THREADS)

struct Collector::Thread {
  Thread(pthread_t pthread, mach_port_t mthread) : posixThread(pthread), machThread(mthread) {}
  Thread *next;
  pthread_t posixThread;
  mach_port_t machThread;
};

pthread_key_t registeredThreadKey;
pthread_once_t registeredThreadKeyOnce = PTHREAD_ONCE_INIT;

Collector::Thread *registeredThreads;

static void destroyRegisteredThread(void *data)
{
  Collector::Thread *thread = (Collector::Thread *)data;

  if (registeredThreads == thread) {
    registeredThreads = registeredThreads->next;
  } else {
    Collector::Thread *last = registeredThreads;
    for (Collector::Thread *t = registeredThreads->next; t != NULL; t = t->next) {
      if (t == thread) {
        last->next = t->next;
          break;
      }
      last = t;
    }
  }

  delete thread;
}

static void initializeRegisteredThreadKey()
{
  pthread_key_create(&registeredThreadKey, destroyRegisteredThread);
}

void Collector::registerThread()
{
  pthread_once(&registeredThreadKeyOnce, initializeRegisteredThreadKey);

  if (!pthread_getspecific(registeredThreadKey)) {
    pthread_t pthread = pthread_self();
    WTF::fastMallocRegisterThread(pthread);
    Collector::Thread *thread = new Collector::Thread(pthread, pthread_mach_thread_np(pthread));
    thread->next = registeredThreads;
    registeredThreads = thread;
    pthread_setspecific(registeredThreadKey, thread);
  }
}

#endif

#define IS_POINTER_ALIGNED(p) (((intptr_t)(p) & (sizeof(char *) - 1)) == 0)

// cell size needs to be a power of two for this to be valid
#define IS_CELL_ALIGNED(p) (((intptr_t)(p) & CELL_MASK) == 0)

void Collector::markStackObjectsConservatively(void *start, void *end)
{
  if (start > end) {
    void *tmp = start;
    start = end;
    end = tmp;
  }

  assert(((char *)end - (char *)start) < 0x1000000);
  assert(IS_POINTER_ALIGNED(start));
  assert(IS_POINTER_ALIGNED(end));

  char **p = (char **)start;
  char **e = (char **)end;

  // We use allBlocks here since we want to mark oversize cells as well.
  // Their trailers will have the mark bit set already, to avoid trouble.
  size_t usedBlocks = heap.allBlocks.used();
  CollectorBlock **blocks = heap.allBlocks.m_data;

  const size_t lastCellOffset = sizeof(CollectorCell) * (CELLS_PER_BLOCK - 1);

  while (p != e) {
    char *x = *p++;
    VG_DEFINED(x);
    if (IS_CELL_ALIGNED(x) && x) {
      uintptr_t offset = reinterpret_cast<uintptr_t>(x) & BLOCK_OFFSET_MASK;
      CollectorBlock* blockAddr = reinterpret_cast<CollectorBlock*>(x - offset);
      for (size_t block = 0; block < usedBlocks; block++) {
        if ((blocks[block] == blockAddr) && (offset <= lastCellOffset)) {
          if (((CollectorCell *)x)->u.freeCell.zeroIfFree != 0) {
            JSCell *imp = reinterpret_cast<JSCell *>(x);
            if (!imp->marked())
              imp->mark();
          }
        } // if valid block
      } // for each block
    } // if cell-aligned
  } // for each pointer
}

static inline void* currentThreadStackBase()
{
#if PLATFORM(DARWIN)
    pthread_t thread = pthread_self();
    void *stackBase = pthread_get_stackaddr_np(thread);
#elif (PLATFORM(WIN_OS) || COMPILER(CYGWIN))
    // tested with mingw32, mingw64, msvc2008, cygwin
    NT_TIB *pTib = (NT_TIB*)NtCurrentTeb();
    void *stackBase = (void *)pTib->StackBase;
#elif PLATFORM(SOLARIS_OS)
    stack_t s;
    thr_stksegment(&s);
    return s.ss_sp;
    // NOTREACHED
    void *stackBase = 0;
#elif PLATFORM(UNIX)
    static void *stackBase = 0;
    static pthread_t stackThread;
    pthread_t thread = pthread_self();
    if (stackBase == 0 || thread != stackThread) {
        pthread_attr_t sattr;
#if HAVE(PTHREAD_NP_H) || defined(__NetBSD__)
        // e.g. on FreeBSD 5.4, neundorf@kde.org
        // also on NetBSD 3 and 4, raphael.langerhorst@kdemail.net
        // HIGHLY RECCOMENDED by manpage to allocate storage, avoids
        // crashing in JS immediately in FreeBSD. 
        pthread_attr_init(&sattr);
        pthread_attr_get_np(thread, &sattr);
#else
        // FIXME: this function is non-portable; other POSIX systems may have different np alternatives
        pthread_getattr_np(thread, &sattr);
#endif // picking the _np function to use --- Linux or BSD

        size_t stackSize;
        pthread_attr_getstack(&sattr, &stackBase, &stackSize);
        stackBase = (char *)stackBase + stackSize;      // a matter of interpretation, apparently...
        pthread_attr_destroy(&sattr);
        assert(stackBase);
        stackThread = thread;
    }
#else
#error Need a way to get the stack base on this platform
#endif
    return stackBase;
}


void Collector::markCurrentThreadConservatively()
{
    // setjmp forces volatile registers onto the stack
    jmp_buf registers;
#if COMPILER(MSVC)
#pragma warning(push)
#pragma warning(disable: 4611)
#endif
    setjmp(registers);
#if COMPILER(MSVC)
#pragma warning(pop)
#endif

    void* dummy;
    void* stackPointer = &dummy;
    void* stackBase = currentThreadStackBase();

    markStackObjectsConservatively(stackPointer, stackBase);
}

#if USE(MULTIPLE_THREADS)

typedef unsigned long usword_t; // word size, assumed to be either 32 or 64 bit

void Collector::markOtherThreadConservatively(Thread *thread)
{
  thread_suspend(thread->machThread);

#if PLATFORM(X86)
  i386_thread_state_t regs;
  unsigned user_count = sizeof(regs)/sizeof(int);
  thread_state_flavor_t flavor = i386_THREAD_STATE;
#elif PLATFORM(X86_64)
  x86_thread_state64_t  regs;
  unsigned user_count = x86_THREAD_STATE64_COUNT;
  thread_state_flavor_t flavor = x86_THREAD_STATE64;
#elif PLATFORM(PPC)
  ppc_thread_state_t  regs;
  unsigned user_count = PPC_THREAD_STATE_COUNT;
  thread_state_flavor_t flavor = PPC_THREAD_STATE;
#elif PLATFORM(PPC64)
  ppc_thread_state64_t  regs;
  unsigned user_count = PPC_THREAD_STATE64_COUNT;
  thread_state_flavor_t flavor = PPC_THREAD_STATE64;
#else
#error Unknown Architecture
#endif
  // get the thread register state
  thread_get_state(thread->machThread, flavor, (thread_state_t)&regs, &user_count);

  // scan the registers
  markStackObjectsConservatively((void *)&regs, (void *)((char *)&regs + (user_count * sizeof(usword_t))));

  // scan the stack
#if PLATFORM(X86) && __DARWIN_UNIX03
  markStackObjectsConservatively((void *)regs.__esp, pthread_get_stackaddr_np(thread->posixThread));
#elif PLATFORM(X86)
  markStackObjectsConservatively((void *)regs.esp, pthread_get_stackaddr_np(thread->posixThread));
#elif PLATFORM(X86_64) && __DARWIN_UNIX03
  markStackObjectsConservatively((void *)regs.__rsp, pthread_get_stackaddr_np(thread->posixThread));
#elif PLATFORM(X86_64)
  markStackObjectsConservatively((void *)regs.rsp, pthread_get_stackaddr_np(thread->posixThread));
#elif (PLATFORM(PPC) || PLATFORM(PPC64)) && __DARWIN_UNIX03
  markStackObjectsConservatively((void *)regs.__r1, pthread_get_stackaddr_np(thread->posixThread));
#elif PLATFORM(PPC) || PLATFORM(PPC64)
  markStackObjectsConservatively((void *)regs.r1, pthread_get_stackaddr_np(thread->posixThread));
#else
#error Unknown Architecture
#endif

  thread_resume(thread->machThread);
}

#endif

void Collector::markStackObjectsConservatively()
{
  markCurrentThreadConservatively();

#if USE(MULTIPLE_THREADS)
  for (Thread *thread = registeredThreads; thread != NULL; thread = thread->next) {
    if (thread->posixThread != pthread_self()) {
      markOtherThreadConservatively(thread);
    }
  }
#endif
}

typedef HashCountedSet<JSCell *> ProtectCounts;

static ProtectCounts& protectedValues()
{
    static ProtectCounts pv;
    return pv;
}

void Collector::protect(JSValue *k)
{
    assert(k);
    assert(JSLock::lockCount() > 0);

    if (JSImmediate::isImmediate(k))
      return;

    protectedValues().add(k->asCell());
}

void Collector::unprotect(JSValue *k)
{
    assert(k);
    assert(JSLock::lockCount() > 0);

    if (JSImmediate::isImmediate(k))
      return;

    protectedValues().remove(k->asCell());
}

void Collector::markProtectedObjects()
{
  ProtectCounts& pv = protectedValues();
  ProtectCounts::iterator end = pv.end();
  for (ProtectCounts::iterator it = pv.begin(); it != end; ++it) {
    JSCell *val = it->first;
    if (!val->marked())
      val->mark();
  }
}

bool Collector::collect()
{
  assert(JSLock::lockCount() > 0);

#if USE(MULTIPLE_THREADS)
    bool currentThreadIsMainThread = pthread_main_np();
#else
    bool currentThreadIsMainThread = true;
#endif

  Interpreter::markSourceCachedObjects();

  if (Interpreter::s_hook) {
    Interpreter* scr = Interpreter::s_hook;
    do {
      scr->mark(currentThreadIsMainThread);
      scr = scr->next;
    } while (scr != Interpreter::s_hook);
  }

  // MARK: first mark all referenced objects recursively starting out from the set of root objects

  markStackObjectsConservatively();
  markProtectedObjects();
  List::markProtectedLists();
#if USE(MULTIPLE_THREADS)
  if (!currentThreadIsMainThread)
    markMainThreadOnlyObjects();
#endif

  // SWEEP: delete everything with a zero refcount (garbage) and unmark everything else

  // Note: if a cell has zeroIfFree == 0, it is either free,
  // or in the middle of being constructed and has not yet
  // had its vtable filled. Hence, such cells should not be cleaned up

  size_t emptyBlocks = 0;
  size_t numLiveObjects = heap.numLiveObjects;

  for (size_t block = 0; block < heap.blocks.used(); block++) {
    CollectorBlock *curBlock = heap.blocks[block];

    size_t usedCells = curBlock->usedCells;
    CollectorCell *freeList = curBlock->freeList;

    if (usedCells == CELLS_PER_BLOCK) {
      // special case with a block where all cells are used -- testing indicates this happens often
      for (size_t i = 0; i < CELLS_PER_BLOCK; i++) {
        CollectorCell *cell = curBlock->cells + i;
        JSCell *imp = reinterpret_cast<JSCell *>(cell);
        if (!curBlock->marked.get(i) && currentThreadIsMainThread) {
          // special case for allocated but uninitialized object
          // (We don't need this check earlier because nothing prior this point assumes the object has a valid vptr.)
          if (cell->u.freeCell.zeroIfFree == 0)
            continue;
          imp->~JSCell();
          --usedCells;
          --numLiveObjects;

          // put cell on the free list
          cell->u.freeCell.zeroIfFree = 0;
          cell->u.freeCell.next = reinterpret_cast<char *>(freeList) - reinterpret_cast<char *>(cell + 1);
          freeList = cell;
        }
      }
    } else {
      size_t minimumCellsToProcess = usedCells;
      for (size_t i = 0; (i < minimumCellsToProcess) & (i < CELLS_PER_BLOCK); i++) {
        CollectorCell *cell = curBlock->cells + i;
        if (cell->u.freeCell.zeroIfFree == 0) {
          ++minimumCellsToProcess;
        } else {
          JSCell *imp = reinterpret_cast<JSCell *>(cell);
          if (!curBlock->marked.get(i) && currentThreadIsMainThread) {
            imp->~JSCell();
            --usedCells;
            --numLiveObjects;

            // put cell on the free list
            cell->u.freeCell.zeroIfFree = 0;
            cell->u.freeCell.next = reinterpret_cast<char *>(freeList) - reinterpret_cast<char *>(cell + 1);
            freeList = cell;
          }
        }
      }
    }

    curBlock->marked.clearAll();
    curBlock->usedCells = usedCells;
    curBlock->freeList = freeList;

    if (usedCells == 0) {
      emptyBlocks++;
      if (emptyBlocks > SPARE_EMPTY_BLOCKS) {
#if !DEBUG_COLLECTOR
        freeBlock(curBlock);
#endif
        // swap with the last block so we compact as we go
        heap.blocks.m_data[block] = heap.blocks[heap.blocks.used() - 1];
        heap.blocks.m_used--;
        block--; // Don't move forward a step in this case
      }
    }
  }

  if (heap.numLiveObjects != numLiveObjects)
    heap.firstBlockWithPossibleSpace = 0;

  // Now sweep oversize blocks.
  emptyBlocks = 0;
  for (size_t ob = 0; ob < heap.oversizeBlocks.used(); ++ob) {
    CollectorBlock* curBlock = heap.oversizeBlocks[ob];
    CollectorCell *freeList = curBlock->freeList;
    size_t usedCells = curBlock->usedCells;

    // Go through the cells
    for (size_t i = 0; i < CELLS_PER_BLOCK; i++) {
      if (i % 32 == 0 && curBlock->allocd.bits[i/32] == 0) {
        // Nothing used around here, skip this and 31 next cells
        i += 31;
        continue;
      }

      CollectorCell *cell = curBlock->cells + i;
      if (cell->u.freeCell.zeroIfFree == 0)
        continue;

      if (!curBlock->allocd.get(i))
        continue;

      JSCell *imp = reinterpret_cast<JSCell *>(cell);

      // Live and trailer cells will all have the mark set,
      // so we only have to collect with it clear --
      // and we already took care of those that are
      // already free (or being initialized) above
      if (!curBlock->marked.get(i)) {
        // Free this block...
        imp->~JSCell();
        --numLiveObjects;
        --usedCells;

        // Mark the block and the trailers as available
        cell->u.freeCell.zeroIfFree = 0;
        curBlock->allocd.clear(i);

        ++i; // Go to the potential trailer..
        while (curBlock->trailer.get(i) && i < CELLS_PER_BLOCK) {
          --usedCells;
          curBlock->allocd.clear(i);
          curBlock->trailer.clear(i);
          curBlock->marked.clear (i);
          curBlock->cells[i].u.freeCell.zeroIfFree = 0;
          ++i;
        }
        --i; // Last item we processed.
      } else {
        // If this is not a trailer cell, clear the mark
        if (!curBlock->trailer.get(i))
          curBlock->marked.clear(i);
      }
    } // each cell
    curBlock->usedCells = usedCells;
    curBlock->freeList = freeList;
    if (usedCells == 0) {
      emptyBlocks++;
      if (emptyBlocks > SPARE_EMPTY_BLOCKS) {
        freeBlock(curBlock);

        // swap with the last block so we compact as we go
        heap.oversizeBlocks.m_data[ob] = heap.oversizeBlocks[heap.oversizeBlocks.used() - 1];
        heap.oversizeBlocks.m_used--;
        ob--; // Don't move forward a step in this case
      }
    }
  } // each oversize block

  bool deleted = heap.numLiveObjects != numLiveObjects;

  heap.numLiveObjects = numLiveObjects;
  heap.numLiveObjectsAtLastCollect = numLiveObjects;
  heap.extraCost = 0;

  bool newMemoryFull = (numLiveObjects >= KJS_MEM_LIMIT);
  if (newMemoryFull && newMemoryFull != memoryFull)
    reportOutOfMemoryToAllInterpreters();
  memoryFull = newMemoryFull;

  return deleted;
}

size_t Collector::size()
{
  return heap.numLiveObjects;
}

#ifdef KJS_DEBUG_MEM
void Collector::finalCheck()
{
}
#endif

size_t Collector::numInterpreters()
{
  size_t count = 0;
  if (Interpreter::s_hook) {
    Interpreter* scr = Interpreter::s_hook;
    do {
      ++count;
      scr = scr->next;
    } while (scr != Interpreter::s_hook);
  }
  return count;
}

size_t Collector::numProtectedObjects()
{
  return protectedValues().size();
}

static const char *typeName(JSCell *val)
{
  const char *name = "???";
  switch (val->type()) {
    case UnspecifiedType:
      break;
    case UndefinedType:
      name = "undefined";
      break;
    case NullType:
      name = "null";
      break;
    case BooleanType:
      name = "boolean";
      break;
    case StringType:
      name = "string";
      break;
    case NumberType:
      name = "number";
      break;
    case ObjectType: {
      const ClassInfo *info = static_cast<JSObject *>(val)->classInfo();
      name = info ? info->className : "Object";
      break;
    }
    case GetterSetterType:
      name = "gettersetter";
      break;
  }
  return name;
}

HashCountedSet<const char*>* Collector::rootObjectTypeCounts()
{
    HashCountedSet<const char*>* counts = new HashCountedSet<const char*>;

    ProtectCounts& pv = protectedValues();
    ProtectCounts::iterator end = pv.end();
    for (ProtectCounts::iterator it = pv.begin(); it != end; ++it)
        counts->add(typeName(it->first));

    return counts;
}

void Collector::reportOutOfMemoryToAllInterpreters()
{
    if (!Interpreter::s_hook)
        return;

    Interpreter* interpreter = Interpreter::s_hook;
    do {
        ExecState* exec = interpreter->execState();

        exec->setException(Error::create(exec, GeneralError, "Out of memory"));

        interpreter = interpreter->next;
    } while(interpreter != Interpreter::s_hook);
}

} // namespace KJS