1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
|
//C- -*- C++ -*-
//C- -------------------------------------------------------------------
//C- DjVuLibre-3.5
//C- Copyright (c) 2002 Leon Bottou and Yann Le Cun.
//C- Copyright (c) 2001 AT&T
//C-
//C- This software is subject to, and may be distributed under, the
//C- GNU General Public License, Version 2. The license should have
//C- accompanied the software or you may obtain a copy of the license
//C- from the Free Software Foundation at http://www.fsf.org .
//C-
//C- This program is distributed in the hope that it will be useful,
//C- but WITHOUT ANY WARRANTY; without even the implied warranty of
//C- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
//C- GNU General Public License for more details.
//C-
//C- DjVuLibre-3.5 is derived from the DjVu(r) Reference Library
//C- distributed by Lizardtech Software. On July 19th 2002, Lizardtech
//C- Software authorized us to replace the original DjVu(r) Reference
//C- Library notice by the following text (see doc/lizard2002.djvu):
//C-
//C- ------------------------------------------------------------------
//C- | DjVu (r) Reference Library (v. 3.5)
//C- | Copyright (c) 1999-2001 LizardTech, Inc. All Rights Reserved.
//C- | The DjVu Reference Library is protected by U.S. Pat. No.
//C- | 6,058,214 and patents pending.
//C- |
//C- | This software is subject to, and may be distributed under, the
//C- | GNU General Public License, Version 2. The license should have
//C- | accompanied the software or you may obtain a copy of the license
//C- | from the Free Software Foundation at http://www.fsf.org .
//C- |
//C- | The computer code originally released by LizardTech under this
//C- | license and unmodified by other parties is deemed "the LIZARDTECH
//C- | ORIGINAL CODE." Subject to any third party intellectual property
//C- | claims, LizardTech grants recipient a worldwide, royalty-free,
//C- | non-exclusive license to make, use, sell, or otherwise dispose of
//C- | the LIZARDTECH ORIGINAL CODE or of programs derived from the
//C- | LIZARDTECH ORIGINAL CODE in compliance with the terms of the GNU
//C- | General Public License. This grant only confers the right to
//C- | infringe patent claims underlying the LIZARDTECH ORIGINAL CODE to
//C- | the extent such infringement is reasonably necessary to enable
//C- | recipient to make, have made, practice, sell, or otherwise dispose
//C- | of the LIZARDTECH ORIGINAL CODE (or portions thereof) and not to
//C- | any greater extent that may be necessary to utilize further
//C- | modifications or combinations.
//C- |
//C- | The LIZARDTECH ORIGINAL CODE is provided "AS IS" WITHOUT WARRANTY
//C- | OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
//C- | TO ANY WARRANTY OF NON-INFRINGEMENT, OR ANY IMPLIED WARRANTY OF
//C- | MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
//C- +------------------------------------------------------------------
//
// $Id: BSEncodeByteStream.cpp,v 1.8 2003/11/07 22:08:20 leonb Exp $
// $Name: release_3_5_15 $
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#if NEED_GNUG_PRAGMAS
# pragma implementation
#endif
// - Author: Leon Bottou, 07/1998
#include "BSByteStream.h"
#include "GString.h"
#undef BSORT_TIMER
#ifdef BSORT_TIMER
#include "GOS.h"
#endif
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#ifdef HAVE_NAMESPACES
namespace DJVU {
# ifdef NOT_DEFINED // Just to fool emacs c++ mode
}
#endif
#endif
// ========================================
// --- Assertion
#define ASSERT(expr) do{if(!(expr))G_THROW("assertion ("#expr") failed");}while(0)
// ========================================
// --- Global Definitions
#ifdef OVERFLOW
#undef OVERFLOW
#endif
// Overflow required when encoding
static const int OVERFLOW=32;
// Sorting tresholds
static const int RANKSORT_THRESH=10;
static const int QUICKSORT_STACK=512;
static const int PRESORT_THRESH=10;
static const int PRESORT_DEPTH=8;
static const int RADIX_THRESH=32768;
static const int FREQS0=100000;
static const int FREQS1=1000000;
// ========================================
// -- Sorting Routines
class _BSort // DJVU_CLASS
{
public:
~_BSort();
_BSort(unsigned char *data, int size);
void run(int &markerpos);
private:
// Members
int size;
unsigned char *data;
unsigned int *posn;
GPBuffer<unsigned int> gposn;
int *rank;
GPBuffer<int> grank;
// Helpers
inline int GT(int p1, int p2, int depth);
inline int GTD(int p1, int p2, int depth);
// -- final in-depth sort
void ranksort(int lo, int hi, int d);
// -- doubling sort
int pivot3r(int *rr, int lo, int hi);
void quicksort3r(int lo, int hi, int d);
// -- presort to depth PRESORT_DEPTH
unsigned char pivot3d(unsigned char *dd, int lo, int hi);
void quicksort3d(int lo, int hi, int d);
// -- radixsort
void radixsort16(void);
void radixsort8(void);
};
// blocksort -- the main entry point
static void
blocksort(unsigned char *data, int size, int &markerpos)
{
_BSort bsort(data, size);
bsort.run(markerpos);
}
// _BSort construction
_BSort::_BSort(unsigned char *xdata, int xsize)
: size(xsize), data(xdata), gposn(posn,xsize), grank(rank,xsize+1)
{
ASSERT(size>0 && size<0x1000000);
rank[size] = -1;
}
_BSort::~_BSort()
{
}
// GT -- compare suffixes using rank information
inline int
_BSort::GT(int p1, int p2, int depth)
{
int r1, r2;
int twod = depth + depth;
while (1)
{
r1=rank[p1+depth]; r2=rank[p2+depth];
p1+=twod; p2+=twod;
if (r1!=r2)
return (r1>r2);
r1=rank[p1]; r2=rank[p2];
if (r1!=r2)
return (r1>r2);
r1=rank[p1+depth]; r2=rank[p2+depth];
p1+=twod; p2+=twod;
if (r1!=r2)
return (r1>r2);
r1=rank[p1]; r2=rank[p2];
if (r1!=r2)
return (r1>r2);
r1=rank[p1+depth]; r2=rank[p2+depth];
p1+=twod; p2+=twod;
if (r1!=r2)
return (r1>r2);
r1=rank[p1]; r2=rank[p2];
if (r1!=r2)
return (r1>r2);
r1=rank[p1+depth]; r2=rank[p2+depth];
p1+=twod; p2+=twod;
if (r1!=r2)
return (r1>r2);
r1=rank[p1]; r2=rank[p2];
if (r1!=r2)
return (r1>r2);
};
}
// _BSort::ranksort --
// -- a simple insertion sort based on GT
void
_BSort::ranksort(int lo, int hi, int depth)
{
int i,j;
for (i=lo+1; i<=hi; i++)
{
int tmp = posn[i];
for(j=i-1; j>=lo && GT(posn[j], tmp, depth); j--)
posn[j+1] = posn[j];
posn[j+1] = tmp;
}
for(i=lo;i<=hi;i++)
rank[posn[i]]=i;
}
// pivot -- return suitable pivot
inline int
_BSort::pivot3r(int *rr, int lo, int hi)
{
int c1, c2, c3;
if (hi-lo > 256)
{
c1 = pivot3r(rr, lo, (6*lo+2*hi)/8);
c2 = pivot3r(rr, (5*lo+3*hi)/8, (3*lo+5*hi)/8);
c3 = pivot3r(rr, (2*lo+6*hi)/8, hi);
}
else
{
c1 = rr[posn[lo]];
c2 = rr[posn[(lo+hi)/2]];
c3 = rr[posn[hi]];
}
// Extract median
if (c1>c3)
{ int tmp=c1; c1=c3; c3=tmp; }
if (c2<=c1)
return c1;
else if (c2>=c3)
return c3;
else
return c2;
}
// _BSort::quicksort3r -- Three way quicksort algorithm
// Sort suffixes based on rank at pos+depth
// The algorithm breaks into ranksort when size is
// smaller than RANKSORT_THRESH
static inline int
mini(int a, int b)
{
return (a<=b) ? a : b;
}
static inline void
vswap(int i, int j, int n, unsigned int *x)
{
while (n-- > 0)
{ int tmp = x[i]; x[i++]=x[j]; x[j++]=tmp; }
}
void
_BSort::quicksort3r(int lo, int hi, int depth)
{
/* Initialize stack */
int slo[QUICKSORT_STACK];
int shi[QUICKSORT_STACK];
int sp = 1;
slo[0] = lo;
shi[0] = hi;
// Recursion elimination loop
while (--sp>=0)
{
lo = slo[sp];
hi = shi[sp];
// Test for insertion sort
if (hi-lo<RANKSORT_THRESH)
{
ranksort(lo, hi, depth);
}
else
{
int tmp;
int *rr=rank+depth;
int med = pivot3r(rr,lo,hi);
// -- positions are organized as follows:
// [lo..l1[ [l1..l[ ]h..h1] ]h1..hi]
// = < > =
int l1 = lo;
int h1 = hi;
while (rr[posn[l1]]==med && l1<h1) { l1++; }
while (rr[posn[h1]]==med && l1<h1) { h1--; }
int l = l1;
int h = h1;
// -- partition set
for (;;)
{
while (l<=h)
{
int c = rr[posn[l]] - med;
if (c > 0) break;
if (c == 0) { tmp=posn[l]; posn[l]=posn[l1]; posn[l1++]=tmp; }
l++;
}
while (l<=h)
{
int c = rr[posn[h]] - med;
if (c < 0) break;
if (c == 0) { tmp=posn[h]; posn[h]=posn[h1]; posn[h1--]=tmp; }
h--;
}
if (l>h) break;
tmp=posn[l]; posn[l]=posn[h]; posn[h]=tmp;
}
// -- reorganize as follows
// [lo..l1[ [l1..h1] ]h1..hi]
// < = >
tmp = mini(l1-lo, l-l1);
vswap(lo, l-tmp, tmp, posn);
l1 = lo + (l-l1);
tmp = mini(hi-h1, h1-h);
vswap(hi-tmp+1, h+1, tmp, posn);
h1 = hi - (h1-h);
// -- process segments
ASSERT(sp+2<QUICKSORT_STACK);
// ----- middle segment (=?) [l1, h1]
for(int i=l1;i<=h1;i++)
rank[posn[i]] = h1;
// ----- lower segment (<) [lo, l1[
if (l1 > lo)
{
for(int i=lo;i<l1;i++)
rank[posn[i]]=l1-1;
slo[sp]=lo;
shi[sp]=l1-1;
if (slo[sp] < shi[sp])
sp++;
}
// ----- upper segment (>) ]h1, hi]
if (h1 < hi)
{
slo[sp]=h1+1;
shi[sp]=hi;
if (slo[sp] < shi[sp])
sp++;
}
}
}
}
// GTD -- compare suffixes using data information
// (up to depth PRESORT_DEPTH)
inline int
_BSort::GTD(int p1, int p2, int depth)
{
unsigned char c1, c2;
p1+=depth; p2+=depth;
while (depth < PRESORT_DEPTH)
{
// Perform two
c1=data[p1]; c2=data[p2];
if (c1!=c2)
return (c1>c2);
c1=data[p1+1]; c2=data[p2+1];
p1+=2; p2+=2; depth+=2;
if (c1!=c2)
return (c1>c2);
}
if (p1<size && p2<size)
return 0;
return (p1<p2);
}
// pivot3d -- return suitable pivot
inline unsigned char
_BSort::pivot3d(unsigned char *rr, int lo, int hi)
{
unsigned char c1, c2, c3;
if (hi-lo > 256)
{
c1 = pivot3d(rr, lo, (6*lo+2*hi)/8);
c2 = pivot3d(rr, (5*lo+3*hi)/8, (3*lo+5*hi)/8);
c3 = pivot3d(rr, (2*lo+6*hi)/8, hi);
}
else
{
c1 = rr[posn[lo]];
c2 = rr[posn[(lo+hi)/2]];
c3 = rr[posn[hi]];
}
// Extract median
if (c1>c3)
{ int tmp=c1; c1=c3; c3=tmp; }
if (c2<=c1)
return c1;
else if (c2>=c3)
return c3;
else
return c2;
}
// _BSort::quicksort3d -- Three way quicksort algorithm
// Sort suffixes based on strings until reaching
// depth rank at pos+depth
// The algorithm breaks into ranksort when size is
// smaller than PRESORT_THRESH
void
_BSort::quicksort3d(int lo, int hi, int depth)
{
/* Initialize stack */
int slo[QUICKSORT_STACK];
int shi[QUICKSORT_STACK];
int sd[QUICKSORT_STACK];
int sp = 1;
slo[0] = lo;
shi[0] = hi;
sd[0] = depth;
// Recursion elimination loop
while (--sp>=0)
{
lo = slo[sp];
hi = shi[sp];
depth = sd[sp];
// Test for insertion sort
if (depth >= PRESORT_DEPTH)
{
for (int i=lo; i<=hi; i++)
rank[posn[i]] = hi;
}
else if (hi-lo<PRESORT_THRESH)
{
int i,j;
for (i=lo+1; i<=hi; i++)
{
int tmp = posn[i];
for(j=i-1; j>=lo && GTD(posn[j], tmp, depth); j--)
posn[j+1] = posn[j];
posn[j+1] = tmp;
}
for(i=hi;i>=lo;i=j)
{
int tmp = posn[i];
rank[tmp] = i;
for (j=i-1; j>=lo && !GTD(tmp,posn[j],depth); j--)
rank[posn[j]] = i;
}
}
else
{
int tmp;
unsigned char *dd=data+depth;
unsigned char med = pivot3d(dd,lo,hi);
// -- positions are organized as follows:
// [lo..l1[ [l1..l[ ]h..h1] ]h1..hi]
// = < > =
int l1 = lo;
int h1 = hi;
while (dd[posn[l1]]==med && l1<h1) { l1++; }
while (dd[posn[h1]]==med && l1<h1) { h1--; }
int l = l1;
int h = h1;
// -- partition set
for (;;)
{
while (l<=h)
{
int c = (int)dd[posn[l]] - (int)med;
if (c > 0) break;
if (c == 0) { tmp=posn[l]; posn[l]=posn[l1]; posn[l1++]=tmp; }
l++;
}
while (l<=h)
{
int c = (int)dd[posn[h]] - (int)med;
if (c < 0) break;
if (c == 0) { tmp=posn[h]; posn[h]=posn[h1]; posn[h1--]=tmp; }
h--;
}
if (l>h) break;
tmp=posn[l]; posn[l]=posn[h]; posn[h]=tmp;
}
// -- reorganize as follows
// [lo..l1[ [l1..h1] ]h1..hi]
// < = >
tmp = mini(l1-lo, l-l1);
vswap(lo, l-tmp, tmp, posn);
l1 = lo + (l-l1);
tmp = mini(hi-h1, h1-h);
vswap(hi-tmp+1, h+1, tmp, posn);
h1 = hi - (h1-h);
// -- process segments
ASSERT(sp+3<QUICKSORT_STACK);
// ----- middle segment (=?) [l1, h1]
l = l1; h = h1;
if (med==0) // special case for marker [slow]
for (int i=l; i<=h; i++)
if ((int)posn[i]+depth == size-1)
{
tmp=posn[i]; posn[i]=posn[l]; posn[l]=tmp;
rank[tmp]=l++; break;
}
if (l<h)
{ slo[sp] = l; shi[sp] = h; sd[sp++] = depth+1; }
else if (l==h)
{ rank[posn[h]] = h; }
// ----- lower segment (<) [lo, l1[
l = lo;
h = l1-1;
if (l<h)
{ slo[sp] = l; shi[sp] = h; sd[sp++] = depth; }
else if (l==h)
{ rank[posn[h]] = h; }
// ----- upper segment (>) ]h1, hi]
l = h1+1;
h = hi;
if (l<h)
{ slo[sp] = l; shi[sp] = h; sd[sp++] = depth; }
else if (l==h)
{ rank[posn[h]] = h; }
}
}
}
// _BSort::radixsort8 -- 8 bit radix sort
void
_BSort::radixsort8(void)
{
int i;
// Initialize frequency array
int lo[256], hi[256];
for (i=0; i<256; i++)
hi[i] = lo[i] = 0;
// Count occurences
for (i=0; i<size-1; i++)
hi[data[i]] ++;
// Compute positions (lo)
int last = 1;
for (i=0; i<256; i++)
{
lo[i] = last;
hi[i] = last + hi[i] - 1;
last = hi[i] + 1;
}
for (i=0; i<size-1; i++)
{
posn[ lo[data[i]]++ ] = i;
rank[ i ] = hi[data[i]];
}
// Process marker "$"
posn[0] = size-1;
rank[size-1] = 0;
// Extra element
rank[size] = -1;
}
// _BSort::radixsort16 -- 16 bit radix sort
void
_BSort::radixsort16(void)
{
int i;
// Initialize frequency array
int *ftab;
GPBuffer<int> gftab(ftab,65536);
for (i=0; i<65536; i++)
ftab[i] = 0;
// Count occurences
unsigned char c1 = data[0];
for (i=0; i<size-1; i++)
{
unsigned char c2 = data[i+1];
ftab[(c1<<8)|c2] ++;
c1 = c2;
}
// Generate upper position
for (i=1;i<65536;i++)
ftab[i] += ftab[i-1];
// Fill rank array with upper bound
c1 = data[0];
for (i=0; i<size-2; i++)
{
unsigned char c2 = data[i+1];
rank[i] = ftab[(c1<<8)|c2];
c1 = c2;
}
// Fill posn array (backwards)
c1 = data[size-2];
for (i=size-3; i>=0; i--)
{
unsigned char c2 = data[i];
posn[ ftab[(c2<<8)|c1]-- ] = i;
c1 = c2;
}
// Fixup marker stuff
ASSERT(data[size-1]==0);
c1 = data[size-2];
posn[0] = size-1;
posn[ ftab[(c1<<8)] ] = size-2;
rank[size-1] = 0;
rank[size-2] = ftab[(c1<<8)];
// Extra element
rank[size] = -1;
}
// _BSort::run -- main sort loop
void
_BSort::run(int &markerpos)
{
int lo, hi;
ASSERT(size>0);
ASSERT(data[size-1]==0);
#ifdef BSORT_TIMER
long start = GOS::ticks();
#endif
// Step 1: Radix sort
int depth = 0;
if (size > RADIX_THRESH)
{
radixsort16();
depth=2;
}
else
{
radixsort8();
depth=1;
}
// Step 2: Perform presort to depth PRESORT_DEPTH
for (lo=0; lo<size; lo++)
{
hi = rank[posn[lo]];
if (lo < hi)
quicksort3d(lo, hi, depth);
lo = hi;
}
depth = PRESORT_DEPTH;
#ifdef BSORT_TIMER
long middle = GOS::ticks();
#endif
// Step 3: Perform rank doubling
int again = 1;
while (again)
{
again = 0;
int sorted_lo = 0;
for (lo=0; lo<size; lo++)
{
hi = rank[posn[lo]&0xffffff];
if (lo == hi)
{
lo += (posn[lo]>>24) & 0xff;
}
else
{
if (hi-lo < RANKSORT_THRESH)
{
ranksort(lo, hi, depth);
}
else
{
again += 1;
while (sorted_lo < lo-1)
{
int step = mini(255, lo-1-sorted_lo);
posn[sorted_lo] = (posn[sorted_lo]&0xffffff) | (step<<24);
sorted_lo += step+1;
}
quicksort3r(lo, hi, depth);
sorted_lo = hi + 1;
}
lo = hi;
}
}
// Finish threading
while (sorted_lo < lo-1)
{
int step = mini(255, lo-1-sorted_lo);
posn[sorted_lo] = (posn[sorted_lo]&0xffffff) | (step<<24);
sorted_lo += step+1;
}
// Double depth
depth += depth;
}
// Step 4: Permute data
int i;
markerpos = -1;
for (i=0; i<size; i++)
rank[i] = data[i];
for (i=0; i<size; i++)
{
int j = posn[i] & 0xffffff;
if (j>0)
{
data[i] = rank[j-1];
}
else
{
data[i] = 0;
markerpos = i;
}
}
ASSERT(markerpos>=0 && markerpos<size);
#ifdef BSORT_TIMER
long end = GOS::ticks();
DjVuPrintErrorUTF8("Sorting time: %d bytes in %ld + %ld = %ld ms\n",
size-1, middle-start, end-middle, end-start);
#endif
}
// ========================================
// -- Encoding
static void
encode_raw(ZPCodec &zp, int bits, int x)
{
int n = 1;
int m = (1<<bits);
while (n < m)
{
x = (x & (m-1)) << 1;
int b = (x >> bits);
zp.encoder(b);
n = (n<<1) | b;
}
}
static inline void
encode_binary(ZPCodec &zp, BitContext *ctx, int bits, int x)
{
// Require 2^bits-1 contexts
int n = 1;
int m = (1<<bits);
ctx = ctx - 1;
while (n < m)
{
x = (x & (m-1)) << 1;
int b = (x >> bits);
zp.encoder(b, ctx[n]);
n = (n<<1) | b;
}
}
class BSByteStream::Encode : public BSByteStream
{
public:
/** Creates a Static object for allocating the memory area of
length #sz# starting at address #buffer#. */
Encode(GP<ByteStream> bs);
~Encode();
void init(const int encoding);
// Virtual functions
virtual size_t write(const void *buffer, size_t sz);
virtual void flush(void);
protected:
unsigned int encode(void);
};
unsigned int
BSByteStream::Encode::encode()
{
/////////////////////////////////
//////////// Block Sort Tranform
int markerpos = size-1;
blocksort(data,size,markerpos);
/////////////////////////////////
//////////// Encode Output Stream
// Header
ZPCodec &zp=*gzp;
encode_raw(zp, 24, size);
// Determine and Encode Estimation Speed
int fshift = 0;
if (size < FREQS0)
{ fshift=0; zp.encoder(0); }
else if (size < FREQS1)
{ fshift = 1; zp.encoder(1); zp.encoder(0); }
else
{ fshift = 2; zp.encoder(1); zp.encoder(1); }
// MTF
unsigned char mtf[256];
unsigned char rmtf[256];
unsigned int freq[FREQMAX];
int m = 0;
for (m=0; m<256; m++)
mtf[m] = m;
for (m=0; m<256; m++)
rmtf[mtf[m]] = m;
int fadd = 4;
for (m=0; m<FREQMAX; m++)
freq[m] = 0;
// Encode
int i;
int mtfno = 3;
for (i=0; i<size; i++)
{
// Get MTF data
int c = data[i];
int ctxid = CTXIDS-1;
if (ctxid>mtfno) ctxid=mtfno;
mtfno = rmtf[c];
if (i==markerpos)
mtfno = 256;
// Encode using ZPCoder
int b;
BitContext *cx = ctx;
b = (mtfno==0);
zp.encoder(b, cx[ctxid]);
if (b) goto rotate; cx+=CTXIDS;
b = (mtfno==1);
zp.encoder(b, cx[ctxid]);
if (b) goto rotate; cx+=CTXIDS;
b = (mtfno<4);
zp.encoder(b, cx[0]);
if (b) { encode_binary(zp,cx+1,1,mtfno-2); goto rotate; }
cx+=1+1;
b = (mtfno<8);
zp.encoder(b, cx[0]);
if (b) { encode_binary(zp,cx+1,2,mtfno-4); goto rotate; }
cx+=1+3;
b = (mtfno<16);
zp.encoder(b, cx[0]);
if (b) { encode_binary(zp,cx+1,3,mtfno-8); goto rotate; }
cx+=1+7;
b = (mtfno<32);
zp.encoder(b, cx[0]);
if (b) { encode_binary(zp,cx+1,4,mtfno-16); goto rotate; }
cx+=1+15;
b = (mtfno<64);
zp.encoder(b, cx[0]);
if (b) { encode_binary(zp,cx+1,5,mtfno-32); goto rotate; }
cx+=1+31;
b = (mtfno<128);
zp.encoder(b, cx[0]);
if (b) { encode_binary(zp,cx+1,6,mtfno-64); goto rotate; }
cx+=1+63;
b = (mtfno<256);
zp.encoder(b, cx[0]);
if (b) { encode_binary(zp,cx+1,7,mtfno-128); goto rotate; }
continue;
// Rotate MTF according to empirical frequencies (new!)
rotate:
// Adjust frequencies for overflow
fadd = fadd + (fadd>>fshift);
if (fadd > 0x10000000)
{
fadd = fadd>>24;
freq[0] >>= 24;
freq[1] >>= 24;
freq[2] >>= 24;
freq[3] >>= 24;
for (int k=4; k<FREQMAX; k++)
freq[k] = freq[k]>>24;
}
// Relocate new char according to new freq
unsigned int fc = fadd;
if (mtfno < FREQMAX)
fc += freq[mtfno];
int k;
for (k=mtfno; k>=FREQMAX; k--)
{
mtf[k] = mtf[k-1];
rmtf[mtf[k]] = k;
}
for (; k>0 && fc>=freq[k-1]; k--)
{
mtf[k] = mtf[k-1];
freq[k] = freq[k-1];
rmtf[mtf[k]] = k;
}
mtf[k] = c;
freq[k] = fc;
rmtf[mtf[k]] = k;
}
// Terminate
return 0;
}
// ========================================
// --- Construction
BSByteStream::Encode::Encode(GP<ByteStream> xbs)
: BSByteStream(xbs) {}
void
BSByteStream::Encode::init(const int xencoding)
{
gzp=ZPCodec::create(gbs,true,true);
const int encoding=(xencoding<MINBLOCK)?MINBLOCK:xencoding;
if (encoding > MAXBLOCK)
G_THROW( ERR_MSG("ByteStream.blocksize") "\t" + GUTF8String(MAXBLOCK) );
// Record block size
blocksize = encoding * 1024;
// Initialize context array
}
BSByteStream::Encode::~Encode()
{
// Flush
flush();
// Encode EOF marker
encode_raw(*gzp, 24, 0);
// Free allocated memory
}
GP<ByteStream>
BSByteStream::create(GP<ByteStream> xbs,const int blocksize)
{
BSByteStream::Encode *rbs=new BSByteStream::Encode(xbs);
GP<ByteStream> retval=rbs;
rbs->init(blocksize);
return retval;
}
// ========================================
// -- ByteStream interface
void
BSByteStream::Encode::flush()
{
if (bptr>0)
{
ASSERT(bptr<(int)blocksize);
memset(data+bptr, 0, OVERFLOW);
size = bptr+1;
encode();
}
size = bptr = 0;
}
size_t
BSByteStream::Encode::write(const void *buffer, size_t sz)
{
// Trivial checks
if (sz == 0)
return 0;
// Loop
int copied = 0;
while (sz > 0)
{
// Initialize
if (!data)
{
bptr = 0;
gdata.resize(blocksize+OVERFLOW);
}
// Compute remaining
int bytes = blocksize - 1 - bptr;
if (bytes > (int)sz)
bytes = sz;
// Store date (todo: rle)
memcpy(data+bptr, buffer, bytes);
buffer = (void*)((char*)buffer + bytes);
bptr += bytes;
sz -= bytes;
copied += bytes;
offset += bytes;
// Flush when needed
if (bptr + 1 >= (int)blocksize)
flush();
}
// return
return copied;
}
#ifdef HAVE_NAMESPACES
}
# ifndef NOT_USING_DJVU_NAMESPACE
using namespace DJVU;
# endif
#endif
|