File: math_object.cpp

package info (click to toggle)
kdelibs 4:2.2.2-13.woody.14
  • links: PTS
  • area: main
  • in suites: woody
  • size: 36,832 kB
  • ctags: 40,077
  • sloc: cpp: 313,284; ansic: 20,558; xml: 11,448; sh: 11,318; makefile: 2,426; perl: 2,084; yacc: 1,663; java: 1,538; lex: 629; python: 300
file content (163 lines) | stat: -rw-r--r-- 3,592 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
/*
 *  This file is part of the KDE libraries
 *  Copyright (C) 1999-2000 Harri Porten (porten@kde.org)
 *
 *  This library is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU Lesser General Public
 *  License as published by the Free Software Foundation; either
 *  version 2 of the License, or (at your option) any later version.
 *
 *  This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *  Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public
 *  License along with this library; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */

#include <math.h>
#include <stdlib.h>

#include "kjs.h"
#include "types.h"
#include "operations.h"
#include "math_object.h"
#include "lookup.h"

#include "math_object.lut.h"

using namespace KJS;

KJSO Math::get(const UString &p) const
{
  int token = Lookup::find(&mathTable, p);

  if (token < 0)
    return Imp::get(p);

  double d;
  int len = 1;
  switch (token) {
  case Math::Euler:
    d = exp(1.0);
    break;
  case Math::Ln2:
    d = log(2.0);
    break;
  case Math::Ln10:
    d = log(10.0);
    break;
  case Math::Log2E:
    d = 1.0/log(2.0);
    break;
  case Math::Log10E:
    d = 1.0/log(10.0);
    break;
  case Math::Pi:
    d = 2.0 * asin(1.0);
    break;
  case Math::Sqrt1_2:
    d = sqrt(0.5);
    break;
  case Math::Sqrt2:
    d = sqrt(2.0);
    break;
  default:
    if (token == Math::Min || token == Math::Max || token == Math::Pow)
      len = 2;
    return Function(new MathFunc(token, len));
  };

  return Number(d);
}

bool Math::hasProperty(const UString &p, bool recursive) const
{
  return (Lookup::find(&mathTable, p) >= 0 ||
	  (recursive && Imp::hasProperty(p, recursive)));
}

Completion MathFunc::execute(const List &args)
{
  KJSO v = args[0];
  Number n = v.toNumber();
  double arg = n.value();

  KJSO v2 = args[1];
  Number n2 = v2.toNumber();
  double arg2 = n2.value();
  double result;

  switch (id) {
  case Math::Abs:
    result = ( arg < 0 ) ? (-arg) : arg;
    break;
  case Math::ACos:
    result = ::acos(arg);
    break;
  case Math::ASin:
    result = ::asin(arg);
    break;
  case Math::ATan:
    result = ::atan(arg);
    break;
  case Math::ATan2:
    result = ::atan2(arg, arg2);
    break;
  case Math::Ceil:
    result = ::ceil(arg);
    break;
  case Math::Cos:
    result = ::cos(arg);
    break;
  case Math::Exp:
    result = ::exp(arg);
    break;
  case Math::Floor:
    result = ::floor(arg);
    break;
  case Math::Log:
    result = ::log(arg);
    break;
  case Math::Max:
    result = ( arg > arg2 ) ? arg : arg2;
    break;
  case Math::Min:
    result = ( arg < arg2 ) ? arg : arg2;
    break;
  case Math::Pow:
    result = ::pow(arg, arg2);
    break;
  case Math::Random:
    result = ::rand();
    result = result / RAND_MAX;
    break;
  case Math::Round:
    if (isNaN(arg))
      result = arg;
    if (isInf(arg) || isInf(-arg))
      result = arg;
    else if (arg == -0.5)
      result = 0;
    else
      result = (double)(arg >= 0.0 ? int(arg + 0.5) : int(arg - 0.5));
    break;
  case Math::Sin:
    result = ::sin(arg);
    break;
  case Math::Sqrt:
    result = ::sqrt(arg);
    break;
  case Math::Tan:
    result = ::tan(arg);
    break;

  default:
    result = 0.0;
    assert(0);
  }

  return Completion(ReturnValue, Number(result));
}