File: sam-objectmask.py

package info (click to toggle)
kdenlive 25.12.1-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 125,932 kB
  • sloc: cpp: 206,733; xml: 11,858; python: 1,139; ansic: 1,054; javascript: 578; sh: 389; makefile: 15
file content (294 lines) | stat: -rw-r--r-- 12,616 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
#!/usr/bin/env python3
# SPDX-FileCopyrightText: 2024 Jean-Baptiste Mardelle <jb@kdenlive.org>
# SPDX-License-Identifier: GPL-3.0-only OR LicenseRef-KDE-Accepted-GPL

import os
# if using Apple MPS, fall back to CPU for unsupported ops
# os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
import numpy as np
import torch
import sys
import argparse
from PIL import Image

def process_list(list_string):
    array_data = np.fromstring(list_string, dtype=int, sep=',')
    return array_data

def process_csv(array_data, csv_string, resize):
    # Convert the CSV string back to a NumPy array
    vals_list = csv_string.split(';')
    for vals in vals_list:
        frame, csv_data = vals.split("=")
        np_array = np.fromstring(csv_data, dtype=int, sep=',')

        # Reshape the array if necessary (e.g., if it was a 2D array)
        if resize > 1:
            cols = int((np.shape(np_array)[0])/resize)
            np_array = np_array.reshape(cols, resize)
        array_data[int(frame)] = np_array

    #return array_data

if __name__ == "__main__":
    parser = argparse.ArgumentParser("SAM Object Mask Creator")
    parser.add_argument("-P", "--point_coordinates", help="Points coordinates with frame, like '0=200,250,300,255;100=10,50' for 2 points at frame 0 and one at frame 100")
    parser.add_argument("-F", "--preview_frame", help="The frame index for preview", default=-1)
    parser.add_argument("-L", "--labels", help="Points labels, 1 for include, 0 for exclude, like '0=1,0;100=1' for frame 0 and 100")
    parser.add_argument("-B", "--box_coordinates", help="Box coordinates with frame, like '0=10,20,150,255'")
    parser.add_argument("-I", "--inputFolder", help="folder where input jpg files are stored", default="/tmp/src-frames")
    parser.add_argument("-O", "--output", help="folder for rendered png image for preview of folder for rendering", default="/tmp/")
    parser.add_argument("-M", "--model", help="path for the model")
    parser.add_argument("-C", "--config", help="config for the model")
    parser.add_argument("-D", "--device", help="enforce a device: cuda, cpu")
    parser.add_argument("--color", help="mask color", default="255,100,100,180")
    parser.add_argument("--bordercolor", help="mask border color", default="255,100,100,100")
    parser.add_argument("--border", help="mask border width", default="0")
    parser.add_argument('--offload', help="offload memory to CPU", action='store_true')
    args = parser.parse_args()
    #if (args.point_coordinates is None or args.labels is None) and args.box_coordinates is None:
    #    config = vars(args)
    #    print(config)
    #    sys.exit()

    box = {}
    points = {}
    labels = {}
    mask_color = {}
    border_color = {}
    requestedDevice = "cpu"
    if args.point_coordinates != None:
        process_csv(points, args.point_coordinates, 2)
        process_csv(labels, args.labels, 1)
    if args.box_coordinates != None:
        process_csv(box, args.box_coordinates, 4)
    preview_frame = int(args.preview_frame)
    if args.output != None:
        output_frame = args.output
    if args.inputFolder != None:
        inputFolder = args.inputFolder
    if args.model != None:
        modelFile = args.model
    if args.config != None:
        configFile = args.config
    if args.device != None:
        requestedDevice = args.device
    borders = int(args.border)
    mask_color = process_list(args.color)
    border_color = process_list(args.bordercolor)

# select the device for computation
if requestedDevice != None:
    device = torch.device(requestedDevice)
    #if requestedDevice.startswith("cuda"):
        #print(f"Using CUDA version: {torch.version.cuda}")
elif torch.cuda.is_available():
    device = torch.device("cuda")
    #print(f"Using CUDA version: {torch.version.cuda}")
elif torch.backends.mps.is_available():
    device = torch.device("mps")
else:
    device = torch.device("cpu")

if device.type == "cuda":
    # Check available memory
    memInfo = torch.cuda.mem_get_info()
    print(f"GPU MEMINFO: {memInfo[0]} - {memInfo[1]}", file=sys.stdout, flush=True)
    # use bfloat16 for the entire notebook
    torch.autocast("cuda", dtype=torch.bfloat16).__enter__()
    # turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices)
    if torch.cuda.get_device_properties(0).major >= 8:
        torch.backends.cuda.matmul.allow_tf32 = True
        torch.backends.cudnn.allow_tf32 = True
elif device.type == "mps":
    print(
        "\nSupport for MPS devices is preliminary. SAM 2 is trained with CUDA and might "
        "give numerically different outputs and sometimes degraded performance on MPS. "
        "See e.g. https://github.com/pytorch/pytorch/issues/84936 for a discussion."
    )

from sam2.build_sam import build_sam2
from kdenlive_build_sam import build_sam2_video_predictor
from sam2.sam2_image_predictor import SAM2ImagePredictor

scriptFolder = os.path.dirname(os.path.abspath(__file__))
sam2_checkpoint = modelFile
model_cfg = configFile

sam2_model = build_sam2(model_cfg, sam2_checkpoint, device=device)
predictor = SAM2ImagePredictor(sam2_model)

def save_mask(mask, filename, obj_id=None):
    h, w = mask.shape[-2:]
    mask_image = mask.reshape(h, w, 1) * mask_color.reshape(1, 1, -1)
    if borders > 0:
        import cv2
        mask = mask.astype(np.uint8)
        #contours = cv2.findContours(mask,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)[-2]

        contours = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[-2]
        # Try to smooth contours
        #contours = [cv2.approxPolyDP(contour, epsilon=0.01, closed=True) for contour in contours]

        mask_image = cv2.drawContours(mask_image.astype(np.uint8),contours,-1,border_color.tolist(),borders)

        #contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
        # Try to smooth contours
        #contours = [cv2.approxPolyDP(contour, epsilon=0.01, closed=True) for contour in contours]

    pil_img = Image.fromarray(np.uint8(mask_image))
    pil_img.save(filename)


def show_points(coords, labels, ax, marker_size=200):
    pos_points = coords[labels == 1]
    neg_points = coords[labels == 0]
    ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
    ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)

# scan all the JPEG frame names in this directory
frame_names = [
    p for p in os.listdir(inputFolder)
    if os.path.splitext(p)[-1] in [".jpg"]
]
frame_names.sort(key=lambda p: int(os.path.splitext(p)[0]))

def generate_preview(predictor):
    if predictor == None:
        predictor = SAM2ImagePredictor(sam2_model)

    image = Image.open(os.path.join(inputFolder, frame_names[preview_frame]))
    image = np.array(image.convert("RGB"))
    predictor.set_image(image)
    #mask_input = logits[np.argmax(scores), :, :]
    masks, scores, logits = predictor.predict(
        point_coords=None if not points else points[preview_frame],
        point_labels=None if not labels else labels[preview_frame],
        box=None if not box else box[preview_frame],
        multimask_output=False)
    filename = output_frame + '/preview-{:05d}'.format(preview_frame) + '.png'
    save_mask((masks[0]), filename, ann_obj_id)
    print(f"preview ok {preview_frame}", file=sys.stdout, flush=True)

def render_video():
    # run propagation throughout the video and collect the results in a dict
    video_segments = {}  # video_segments contains the per-frame segmentation results
    print("INFO:Propagating in video\n", file=sys.stdout, flush=True)
    for out_frame_idx, out_obj_ids, out_mask_logits in videoPredictor.propagate_in_video(inference_state):
        video_segments[out_frame_idx] = {
            out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
            for i, out_obj_id in enumerate(out_obj_ids)
        }
    # render the segmentation results every few frames
    vis_frame_stride = 1
    print("INFO:Exporting frames\n", file=sys.stdout, flush=True)
    framesCount = len(frame_names)
    for out_frame_idx in range(0, framesCount, vis_frame_stride):
        #plt.figure(figsize=(6, 4))
        #plt.title(f"frame {out_frame_idx}")
        #plt.imshow(Image.open(os.path.join(inputFolder, frame_names[out_frame_idx])))
        for out_obj_id, out_mask in video_segments[out_frame_idx].items():
            filename = output_frame + '/{:05d}'.format(out_frame_idx) + '.png'
            save_mask(out_mask[0], filename, obj_id=out_obj_id)
        if framesCount > 100:
            percent = int(100 * out_frame_idx / framesCount)
            print(f"Export {percent}%|\n", file=sys.stderr, flush=True)

# take a look the first video frame
#frame_idx = 0
#plt.figure(figsize=(9, 6))
#plt.title(f"frame {frame_idx}")
#plt.imshow(Image.open(os.path.join(video_dir, frame_names[frame_idx])))
videoPredictor_initialized = False
ann_obj_id = 1  # give a unique id to each object we interact with (it can be any integers)

if device.type == "cuda" and torch.cuda.get_device_properties(0).major >= 8:
    videoPredictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device=device)  #, vos_optimized=True)
else:
    videoPredictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device=device)

while 1:
    line = sys.stdin.readline().rstrip()
    if line.startswith("edit="):
        inArgs = parser.parse_args(line[5:].split())
        borders = int(args.border)
        mask_color = process_list(args.color)
        border_color = process_list(args.bordercolor)
        continue

    if line.startswith("preview="):
        # Generate image preview
        inArgs = parser.parse_args(line[8:].split())
        if inArgs.point_coordinates != None:
            process_csv(points, inArgs.point_coordinates, 2)
            process_csv(labels, inArgs.labels, 1)
        if inArgs.box_coordinates != None:
            process_csv(box, inArgs.box_coordinates, 4)
        preview_frame = int(inArgs.preview_frame)
        borders = int(inArgs.border)
        mask_color = process_list(inArgs.color)
        border_color = process_list(inArgs.bordercolor)
        generate_preview(predictor)
        # get ready for rendering
        if videoPredictor_initialized == False:
            if args.offload:
                print("Offloading video to CPU\n", file=sys.stdout, flush=True)
            inference_state = videoPredictor.init_state(video_path=inputFolder, offload_video_to_cpu=args.offload)
            videoPredictor_initialized = True
        continue

    if line.startswith("render="):
        if videoPredictor_initialized == False:
            print("INFO:Still loading frames\n", file=sys.stdout, flush=True)
            continue
        # Destroy image predictor
        del predictor
        predictor = None
        # Generate output frames
        output_frame = line[7:].rstrip()
        first_list = list(points.keys())
        in_first = set(first_list)
        in_second = set(box.keys())
        in_second_but_not_in_first = in_second - in_first
        result = first_list + list(in_second_but_not_in_first)

        for frame in result:
            _, _, out_mask_logits = videoPredictor.add_new_points_or_box(
                inference_state=inference_state,
                frame_idx=frame,
                obj_id=ann_obj_id,
                box=None if not box else box[frame],
                points=None if not points else points[frame],
                labels=None if not labels else labels[frame]
            )
        render_video()
        print("mask ok", file=sys.stdout, flush=True)
        del videoPredictor
        videoPredictor_initialized = False
        sys.exit()

    if line == "q":
        print("CLOSING...\n", file=sys.stdout, flush=True)
        sys.exit()


#with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):


# Let's add a positive click at (x, y) = (210, 350) to get started
#points = np.array([[423, 556], [250, 220]], dtype=np.float32)
# for labels, `1` means positive click and `0` means negative click
#labels = np.array([1, 1], np.int32)



# show the results on the current (interacted) frame
# plt.figure(figsize=(9, 6))
# plt.title(f"frame {frame}")
# plt.imshow(Image.open(os.path.join(inputFolder, frame_names[frame])))
#show_points(points, labels, plt.gca())

    #plt.show()

# Transform output png into video with alpha:
# ffmpeg -framerate 25 -pattern_type glob -i '*.png' -c:v ffv1 -pix_fmt yuva420p output.mkv