1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
|
#!/usr/bin/env python3
# SPDX-FileCopyrightText: 2024 Jean-Baptiste Mardelle <jb@kdenlive.org>
# SPDX-License-Identifier: GPL-3.0-only OR LicenseRef-KDE-Accepted-GPL
import os
# if using Apple MPS, fall back to CPU for unsupported ops
# os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
import numpy as np
import torch
import sys
import argparse
from PIL import Image
def process_list(list_string):
array_data = np.fromstring(list_string, dtype=int, sep=',')
return array_data
def process_csv(array_data, csv_string, resize):
# Convert the CSV string back to a NumPy array
vals_list = csv_string.split(';')
for vals in vals_list:
frame, csv_data = vals.split("=")
np_array = np.fromstring(csv_data, dtype=int, sep=',')
# Reshape the array if necessary (e.g., if it was a 2D array)
if resize > 1:
cols = int((np.shape(np_array)[0])/resize)
np_array = np_array.reshape(cols, resize)
array_data[int(frame)] = np_array
#return array_data
if __name__ == "__main__":
parser = argparse.ArgumentParser("SAM Object Mask Creator")
parser.add_argument("-P", "--point_coordinates", help="Points coordinates with frame, like '0=200,250,300,255;100=10,50' for 2 points at frame 0 and one at frame 100")
parser.add_argument("-F", "--preview_frame", help="The frame index for preview", default=-1)
parser.add_argument("-L", "--labels", help="Points labels, 1 for include, 0 for exclude, like '0=1,0;100=1' for frame 0 and 100")
parser.add_argument("-B", "--box_coordinates", help="Box coordinates with frame, like '0=10,20,150,255'")
parser.add_argument("-I", "--inputFolder", help="folder where input jpg files are stored", default="/tmp/src-frames")
parser.add_argument("-O", "--output", help="folder for rendered png image for preview of folder for rendering", default="/tmp/")
parser.add_argument("-M", "--model", help="path for the model")
parser.add_argument("-C", "--config", help="config for the model")
parser.add_argument("-D", "--device", help="enforce a device: cuda, cpu")
parser.add_argument("--color", help="mask color", default="255,100,100,180")
parser.add_argument("--bordercolor", help="mask border color", default="255,100,100,100")
parser.add_argument("--border", help="mask border width", default="0")
parser.add_argument('--offload', help="offload memory to CPU", action='store_true')
args = parser.parse_args()
#if (args.point_coordinates is None or args.labels is None) and args.box_coordinates is None:
# config = vars(args)
# print(config)
# sys.exit()
box = {}
points = {}
labels = {}
mask_color = {}
border_color = {}
requestedDevice = "cpu"
if args.point_coordinates != None:
process_csv(points, args.point_coordinates, 2)
process_csv(labels, args.labels, 1)
if args.box_coordinates != None:
process_csv(box, args.box_coordinates, 4)
preview_frame = int(args.preview_frame)
if args.output != None:
output_frame = args.output
if args.inputFolder != None:
inputFolder = args.inputFolder
if args.model != None:
modelFile = args.model
if args.config != None:
configFile = args.config
if args.device != None:
requestedDevice = args.device
borders = int(args.border)
mask_color = process_list(args.color)
border_color = process_list(args.bordercolor)
# select the device for computation
if requestedDevice != None:
device = torch.device(requestedDevice)
#if requestedDevice.startswith("cuda"):
#print(f"Using CUDA version: {torch.version.cuda}")
elif torch.cuda.is_available():
device = torch.device("cuda")
#print(f"Using CUDA version: {torch.version.cuda}")
elif torch.backends.mps.is_available():
device = torch.device("mps")
else:
device = torch.device("cpu")
if device.type == "cuda":
# Check available memory
memInfo = torch.cuda.mem_get_info()
print(f"GPU MEMINFO: {memInfo[0]} - {memInfo[1]}", file=sys.stdout, flush=True)
# use bfloat16 for the entire notebook
torch.autocast("cuda", dtype=torch.bfloat16).__enter__()
# turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices)
if torch.cuda.get_device_properties(0).major >= 8:
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
elif device.type == "mps":
print(
"\nSupport for MPS devices is preliminary. SAM 2 is trained with CUDA and might "
"give numerically different outputs and sometimes degraded performance on MPS. "
"See e.g. https://github.com/pytorch/pytorch/issues/84936 for a discussion."
)
from sam2.build_sam import build_sam2
from kdenlive_build_sam import build_sam2_video_predictor
from sam2.sam2_image_predictor import SAM2ImagePredictor
scriptFolder = os.path.dirname(os.path.abspath(__file__))
sam2_checkpoint = modelFile
model_cfg = configFile
sam2_model = build_sam2(model_cfg, sam2_checkpoint, device=device)
predictor = SAM2ImagePredictor(sam2_model)
def save_mask(mask, filename, obj_id=None):
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * mask_color.reshape(1, 1, -1)
if borders > 0:
import cv2
mask = mask.astype(np.uint8)
#contours = cv2.findContours(mask,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)[-2]
contours = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[-2]
# Try to smooth contours
#contours = [cv2.approxPolyDP(contour, epsilon=0.01, closed=True) for contour in contours]
mask_image = cv2.drawContours(mask_image.astype(np.uint8),contours,-1,border_color.tolist(),borders)
#contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
# Try to smooth contours
#contours = [cv2.approxPolyDP(contour, epsilon=0.01, closed=True) for contour in contours]
pil_img = Image.fromarray(np.uint8(mask_image))
pil_img.save(filename)
def show_points(coords, labels, ax, marker_size=200):
pos_points = coords[labels == 1]
neg_points = coords[labels == 0]
ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
# scan all the JPEG frame names in this directory
frame_names = [
p for p in os.listdir(inputFolder)
if os.path.splitext(p)[-1] in [".jpg"]
]
frame_names.sort(key=lambda p: int(os.path.splitext(p)[0]))
def generate_preview(predictor):
if predictor == None:
predictor = SAM2ImagePredictor(sam2_model)
image = Image.open(os.path.join(inputFolder, frame_names[preview_frame]))
image = np.array(image.convert("RGB"))
predictor.set_image(image)
#mask_input = logits[np.argmax(scores), :, :]
masks, scores, logits = predictor.predict(
point_coords=None if not points else points[preview_frame],
point_labels=None if not labels else labels[preview_frame],
box=None if not box else box[preview_frame],
multimask_output=False)
filename = output_frame + '/preview-{:05d}'.format(preview_frame) + '.png'
save_mask((masks[0]), filename, ann_obj_id)
print(f"preview ok {preview_frame}", file=sys.stdout, flush=True)
def render_video():
# run propagation throughout the video and collect the results in a dict
video_segments = {} # video_segments contains the per-frame segmentation results
print("INFO:Propagating in video\n", file=sys.stdout, flush=True)
for out_frame_idx, out_obj_ids, out_mask_logits in videoPredictor.propagate_in_video(inference_state):
video_segments[out_frame_idx] = {
out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
for i, out_obj_id in enumerate(out_obj_ids)
}
# render the segmentation results every few frames
vis_frame_stride = 1
print("INFO:Exporting frames\n", file=sys.stdout, flush=True)
framesCount = len(frame_names)
for out_frame_idx in range(0, framesCount, vis_frame_stride):
#plt.figure(figsize=(6, 4))
#plt.title(f"frame {out_frame_idx}")
#plt.imshow(Image.open(os.path.join(inputFolder, frame_names[out_frame_idx])))
for out_obj_id, out_mask in video_segments[out_frame_idx].items():
filename = output_frame + '/{:05d}'.format(out_frame_idx) + '.png'
save_mask(out_mask[0], filename, obj_id=out_obj_id)
if framesCount > 100:
percent = int(100 * out_frame_idx / framesCount)
print(f"Export {percent}%|\n", file=sys.stderr, flush=True)
# take a look the first video frame
#frame_idx = 0
#plt.figure(figsize=(9, 6))
#plt.title(f"frame {frame_idx}")
#plt.imshow(Image.open(os.path.join(video_dir, frame_names[frame_idx])))
videoPredictor_initialized = False
ann_obj_id = 1 # give a unique id to each object we interact with (it can be any integers)
if device.type == "cuda" and torch.cuda.get_device_properties(0).major >= 8:
videoPredictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device=device) #, vos_optimized=True)
else:
videoPredictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device=device)
while 1:
line = sys.stdin.readline().rstrip()
if line.startswith("edit="):
inArgs = parser.parse_args(line[5:].split())
borders = int(args.border)
mask_color = process_list(args.color)
border_color = process_list(args.bordercolor)
continue
if line.startswith("preview="):
# Generate image preview
inArgs = parser.parse_args(line[8:].split())
if inArgs.point_coordinates != None:
process_csv(points, inArgs.point_coordinates, 2)
process_csv(labels, inArgs.labels, 1)
if inArgs.box_coordinates != None:
process_csv(box, inArgs.box_coordinates, 4)
preview_frame = int(inArgs.preview_frame)
borders = int(inArgs.border)
mask_color = process_list(inArgs.color)
border_color = process_list(inArgs.bordercolor)
generate_preview(predictor)
# get ready for rendering
if videoPredictor_initialized == False:
if args.offload:
print("Offloading video to CPU\n", file=sys.stdout, flush=True)
inference_state = videoPredictor.init_state(video_path=inputFolder, offload_video_to_cpu=args.offload)
videoPredictor_initialized = True
continue
if line.startswith("render="):
if videoPredictor_initialized == False:
print("INFO:Still loading frames\n", file=sys.stdout, flush=True)
continue
# Destroy image predictor
del predictor
predictor = None
# Generate output frames
output_frame = line[7:].rstrip()
first_list = list(points.keys())
in_first = set(first_list)
in_second = set(box.keys())
in_second_but_not_in_first = in_second - in_first
result = first_list + list(in_second_but_not_in_first)
for frame in result:
_, _, out_mask_logits = videoPredictor.add_new_points_or_box(
inference_state=inference_state,
frame_idx=frame,
obj_id=ann_obj_id,
box=None if not box else box[frame],
points=None if not points else points[frame],
labels=None if not labels else labels[frame]
)
render_video()
print("mask ok", file=sys.stdout, flush=True)
del videoPredictor
videoPredictor_initialized = False
sys.exit()
if line == "q":
print("CLOSING...\n", file=sys.stdout, flush=True)
sys.exit()
#with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
# Let's add a positive click at (x, y) = (210, 350) to get started
#points = np.array([[423, 556], [250, 220]], dtype=np.float32)
# for labels, `1` means positive click and `0` means negative click
#labels = np.array([1, 1], np.int32)
# show the results on the current (interacted) frame
# plt.figure(figsize=(9, 6))
# plt.title(f"frame {frame}")
# plt.imshow(Image.open(os.path.join(inputFolder, frame_names[frame])))
#show_points(points, labels, plt.gca())
#plt.show()
# Transform output png into video with alpha:
# ffmpeg -framerate 25 -pattern_type glob -i '*.png' -c:v ffv1 -pix_fmt yuva420p output.mkv
|