1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
|
/*
SPDX-FileCopyrightText: 2011 Sven Brauch <svenbrauch@googlemail.com>
SPDX-License-Identifier: GPL-2.0-or-later
*/
#include "unsuretype.h"
#include "helpers.h"
#include "indexedcontainer.h"
#include <duchaindebug.h>
#include <language/duchain/types/typeregister.h>
#include <language/duchain/types/typesystem.h>
#include <language/duchain/types/typealiastype.h>
#include <language/duchain/types/containertypes.h>
#include <language/duchain/types/unsuretype.h>
#include <language/duchain/parsingenvironment.h>
#include <language/duchain/duchainlock.h>
#include <KLocalizedString>
namespace Python {
REGISTER_TYPE(UnsureType);
UnsureType::UnsureType() : KDevelop::UnsureType(createData<UnsureType>())
{
}
UnsureType::UnsureType(const UnsureType& rhs)
: KDevelop::UnsureType(copyData<UnsureType>(*rhs.d_func()))
{
}
UnsureType::UnsureType(KDevelop::UnsureTypeData& data)
: KDevelop::UnsureType(data)
{
}
const QList<AbstractType::Ptr> UnsureType::typesRecursive() const
{
QList<AbstractType::Ptr> results;
FOREACH_FUNCTION ( const IndexedType& type, d_func()->m_types ) {
AbstractType::Ptr current = type.abstractType();
AbstractType::Ptr resolved = Helper::resolveAliasType(current);
if ( resolved->whichType() == AbstractType::TypeUnsure ) {
results.append(resolved.staticCast<UnsureType>()->typesRecursive());
}
else
results.append(current);
}
return results;
}
QString UnsureType::toString() const
{
QString typeList;
QVector<AbstractType::Ptr> types;
auto is_new_type = [&types](const IndexedType newType) {
for ( const auto& type : types ) {
if ( type->indexed() == newType ) {
return false;
}
}
return true;
};
for ( AbstractType::Ptr type : typesRecursive() ) {
if ( ! type ) {
qCWarning(KDEV_PYTHON_DUCHAIN) << "Invalid type: " << type.data();
continue;
}
const auto new_type = Helper::resolveAliasType(type);
if ( is_new_type(new_type->indexed()) ) {
types.append(new_type);
}
}
auto count_and_remove = [&types](std::function<bool(AbstractType::Ptr)> match) -> bool {
auto count = std::count_if(types.begin(), types.end(), match);
if ( count < 3 ) {
// nothing worth collapsing
return false;
}
auto end = std::remove_if(types.begin(), types.end(), match);
types.erase(end, types.end());
return true;
};
QStringList collapsedTypes;
if ( types.size() > 2 ) {
// try to collapse the list, if possible
using T = const AbstractType::Ptr&;
auto have_callable = count_and_remove([](T t) { return t->whichType() == AbstractType::TypeFunction; });
if ( have_callable ) {
// TODO collapse arguments / return type
collapsedTypes.append(i18nc("some object that can be called, in programming", "<callable>"));
}
auto have_iterable = count_and_remove([](T t) { return t.dynamicCast<IndexedContainer>() || t.dynamicCast<ListType>(); });
if ( have_iterable ) {
// TODO collapse element count / types
collapsedTypes.append(i18nc("a set with some elements", "<iterable>"));
}
}
int count = 0;
for ( const auto& type : types ) {
if ( count )
typeList += QStringLiteral(", ");
count += 1;
typeList += type->toString();
}
for ( const auto& collapsed : collapsedTypes ) {
if ( count )
typeList += QStringLiteral(", ");
count += 1;
typeList += collapsed;
}
if ( count == 0 || count > 7 )
return i18nc("refers to a type (in program code) which is not known", "mixed");
if ( count == 1 )
return typeList;
return i18nc("refers to a type (in program code) which can have multiple values", "unsure (%1)", typeList);
}
KDevelop::AbstractType* UnsureType::clone() const
{
UnsureType* n = new UnsureType(*this);
return n;
}
AbstractType::WhichType UnsureType::whichType() const
{
return AbstractType::TypeUnsure;
}
void UnsureType::addType(const IndexedType& indexed) {
auto type = indexed.abstractType();
auto hinted = type.dynamicCast<HintedType>(); // XXX: do we need a read locker here?
if ( ! hinted ) {
// if we aren't adding a HintedType the default implementation works
KDevelop::UnsureType::addType(indexed);
return;
}
auto& list = d_func_dynamic()->m_typesList();
DUChainReadLocker lock;
if (!hinted->isValid()) { // needs a read lock (as does most of the rest of the function)
// can happen if the user saves the currently open document again before parsing has finished
return;
}
// If there is already a HintedType in the list referring to the underlying type
// we only add it if the context it was created in is the same.
// Additionally, we also remove all HintedType instances that are no longer valid
// to make sure the list doesn't grow infinitely large
const auto newHintedTarget = hinted->type()->indexed();
bool alreadyExists = false;
for ( int j = 0; j < list.size(); j++ ) {
const IndexedType oldIndexed = list.at(j);
if (oldIndexed == indexed) {
alreadyExists = true;
}
const auto& old = oldIndexed.abstractType();
if ( auto oldHinted = old.dynamicCast<HintedType>() ) {
if ( !alreadyExists ) {
// only do these checks if we haven't already determined that it is a duplicate
auto oldHintedTarget = oldHinted->type()->indexed();
if ( oldHintedTarget == newHintedTarget ) {
if ( hinted->createdBy() == oldHinted->createdBy()) {
alreadyExists = true;
}
}
}
if ( ! oldHinted->isValid() ) {
// std::remove_if + erase() would be faster than remove() but this list won't have many entries
// and the memcpy() cost is probably massively offset by the IndexedType -> AbstractType
// lookup that we would have to duplicated if we had a separate check for duplicates loop
list.remove(j);
j--;
continue;
}
}
}
if ( !alreadyExists ) {
list.append(indexed);
}
// #define CHECK_DUPLICATES
#ifdef CHECK_DUPLICATES
if (list.size() > 1) {
QString types;
bool foundDuplicates = false;
QStringList checkDuplicates;
FOREACH_FUNCTION(const IndexedType& type2, d_func()->m_types) {
auto t = type2.abstractType();
auto str = t->toString();
types += "\n " + QString::number(type2.index());
auto hinted = t.dynamicCast<HintedType>();
while (hinted) {
auto target = hinted->type();
types += " (aka " + QString::number(target->indexed().index()) + ": " + target->toString()
+ " and context " + QString::number(hinted->createdBy().index()) + ")";
hinted = target.dynamicCast<HintedType>();
}
types += " - " + t->toString() + " of type " + typeid(*t).name();
if (!foundDuplicates) {
if (checkDuplicates.contains(str)) {
foundDuplicates = true;
} else {
checkDuplicates.append(str);
}
}
}
if (foundDuplicates) {
qWarning().nospace().noquote() << "found potential duplicates when adding " << typeid(*type).name()
<< " " << type->toString()
<< "(index = " << indexed.index() << ") ->" << types;
}
}
#endif
}
bool UnsureType::equals(const AbstractType* rhs) const
{
if ( this == rhs ) {
return true;
}
if ( ! dynamic_cast<const UnsureType*>(rhs) ) {
return false;
}
if ( ! KDevelop::UnsureType::equals(rhs) ) {
return false;
}
return true;
}
uint UnsureType::hash() const
{
return KDevelop::UnsureType::hash() + 1;
}
}
|