File: builtinoperators.cpp

package info (click to toggle)
kdevelop 4%3A4.3.1-3
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 18,844 kB
  • sloc: cpp: 91,758; python: 1,095; lex: 422; ruby: 120; sh: 114; xml: 42; makefile: 38
file content (212 lines) | stat: -rw-r--r-- 8,883 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
/* This file is part of KDevelop
    Copyright 2008 David Nolden <david.nolden.kdevelop@art-master.de>

   This library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Library General Public
   License version 2 as published by the Free Software Foundation.

   This library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Library General Public License for more details.

   You should have received a copy of the GNU Library General Public License
   along with this library; see the file COPYING.LIB.  If not, write to
   the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
   Boston, MA 02110-1301, USA.
*/

#include "builtinoperators.h"
#include "cpptypes.h"
#include <language/duchain/types/constantintegraltype.h>
#include "parser/tokens.h"

using namespace KDevelop;

/** A helper-class for evaluating constant binary expressions under different types(int, float, etc.) */
template<class Type>
struct ConstantBinaryExpressionEvaluator {

  Type endValue;

  uint type;
  uint modifier;

  /**
   * Writes the results into endValue, type, and modifier.
   * */
  ConstantBinaryExpressionEvaluator( uint _type, uint _modifier, int tokenKind, ConstantIntegralType* left, ConstantIntegralType* right ) {
    endValue = 0;

    type = _type;
    modifier = _modifier;

    evaluateSpecialTokens(tokenKind, left, right);

    switch( tokenKind ) {
      case '+':
        endValue = left->ConstantIntegralType::value<Type>() + right->ConstantIntegralType::value<Type>();
      break;
      case '-':
        endValue = left->ConstantIntegralType::value<Type>() - right->ConstantIntegralType::value<Type>();
      break;
      case '*':
          endValue = left->ConstantIntegralType::value<Type>() * right->ConstantIntegralType::value<Type>();
      break;
      case '/':
        if(right->ConstantIntegralType::value<Type>())
          endValue = left->ConstantIntegralType::value<Type>() / right->ConstantIntegralType::value<Type>();
        else
          kDebug() << "bad division operator" << left->ConstantIntegralType::value<Type>() << "/" << right->ConstantIntegralType::value<Type>();
      break;
      case '=':
        endValue = right->ConstantIntegralType::value<Type>();
      break;
      case '<':
        endValue = left->ConstantIntegralType::value<Type>() < right->ConstantIntegralType::value<Type>();
        type = IntegralType::TypeBoolean;
      break;
      case '>':
        endValue = left->ConstantIntegralType::value<Type>() > right->ConstantIntegralType::value<Type>();
        type = IntegralType::TypeBoolean;
      break;
      case Token_assign:
        endValue = right->ConstantIntegralType::value<Type>();
      break;
      case Token_eq:
        endValue = left->ConstantIntegralType::value<Type>() == right->ConstantIntegralType::value<Type>();
        type = IntegralType::TypeBoolean;
      break;
      case Token_not_eq:
        endValue = left->ConstantIntegralType::value<Type>() != right->ConstantIntegralType::value<Type>();
        type = IntegralType::TypeBoolean;
      break;
      case Token_leq:
        endValue = left->ConstantIntegralType::value<Type>() <= right->ConstantIntegralType::value<Type>();
        type = IntegralType::TypeBoolean;
      break;
      case Token_geq:
        endValue = left->ConstantIntegralType::value<Type>() >= right->ConstantIntegralType::value<Type>();
        type = IntegralType::TypeBoolean;
      break;
    }
  }

  //This function is used to disable some operators on bool and double values
  void evaluateSpecialTokens( int tokenKind, ConstantIntegralType* left, ConstantIntegralType* right ) {
    switch( tokenKind ) {
      case '%':
        if(right->ConstantIntegralType::value<Type>())
          endValue = left->ConstantIntegralType::value<Type>() % right->ConstantIntegralType::value<Type>();
        else
          kDebug() << "bad modulo operator" << left->ConstantIntegralType::value<Type>() << "%" << right->ConstantIntegralType::value<Type>();
      break;
      case '^':
        endValue = left->ConstantIntegralType::value<Type>() ^ right->ConstantIntegralType::value<Type>();
      break;
      case '&':
        endValue = left->ConstantIntegralType::value<Type>() & right->ConstantIntegralType::value<Type>();
      break;
      case '|':
        endValue = left->ConstantIntegralType::value<Type>() | right->ConstantIntegralType::value<Type>();
      break;
      case Token_leftshift:
        endValue = left->ConstantIntegralType::value<Type>() << right->ConstantIntegralType::value<Type>();
      break;
      case Token_rightshift:
        endValue = left->ConstantIntegralType::value<Type>() >> right->ConstantIntegralType::value<Type>();
      break;
      case Token_and:
        endValue = left->ConstantIntegralType::value<Type>() && right->ConstantIntegralType::value<Type>();
        type = IntegralType::TypeBoolean;
      break;
      case Token_or:
        endValue = left->ConstantIntegralType::value<Type>() || right->ConstantIntegralType::value<Type>();
        type = IntegralType::TypeBoolean;
      break;
    }
  }

  AbstractType::Ptr createType() {
    ConstantIntegralType::Ptr ret( new ConstantIntegralType(type) );
    ret->setModifiers(ret->modifiers() & modifier);
    ret->ConstantIntegralType::setValue<Type>( endValue );
    return AbstractType::Ptr::staticCast(ret);
  }
};

template<>
void ConstantBinaryExpressionEvaluator<double>::evaluateSpecialTokens( int tokenKind, ConstantIntegralType* left, ConstantIntegralType* right ) {
  Q_UNUSED(tokenKind);
  Q_UNUSED(left);
  Q_UNUSED(right);
}

template<>
void ConstantBinaryExpressionEvaluator<float>::evaluateSpecialTokens( int tokenKind, ConstantIntegralType* left, ConstantIntegralType* right ) {
  Q_UNUSED(tokenKind);
  Q_UNUSED(left);
  Q_UNUSED(right);
}



AbstractType::Ptr binaryOperatorReturnType(AbstractType::Ptr left, AbstractType::Ptr right, int tokenKind) {

  if(!left || !right)
    return AbstractType::Ptr();

  IntegralType* leftIntegral = dynamic_cast<IntegralType*>(left.unsafeData());
  IntegralType* rightIntegral = dynamic_cast<IntegralType*>(right.unsafeData());
  PointerType* leftPointer = dynamic_cast<PointerType*>(right.unsafeData());

  AbstractType::Ptr ret;

  //Constantly evaluate integral expressions
  ConstantIntegralType* leftConstantIntegral = dynamic_cast<ConstantIntegralType*>(left.unsafeData());
  ConstantIntegralType* rightConstantIntegral = dynamic_cast<ConstantIntegralType*>(right.unsafeData());

  if(leftIntegral && rightIntegral) {
    if(tokenKind == '+' || tokenKind == '-' || tokenKind == '*' || tokenKind == '/' || tokenKind == '%' || tokenKind == '^' || tokenKind == '&' || tokenKind == '|' || tokenKind == '~' || tokenKind == Token_leftshift || tokenKind == Token_rightshift) {
      if(moreExpressiveThan(leftIntegral, rightIntegral))
        ret = left;
      else
        ret = right;
    }

    if(tokenKind == '<' || tokenKind == '>' || tokenKind == Token_eq || tokenKind == Token_not_eq || tokenKind == Token_leq || tokenKind == Token_geq || tokenKind == Token_not_eq || tokenKind == Token_and || tokenKind == Token_or)
      ret = AbstractType::Ptr(new IntegralType(IntegralType::TypeBoolean));
  }

  if(leftPointer && rightIntegral && (tokenKind == '+' || tokenKind == '-'))
    ret = left;

  IntegralType* retIntegral = dynamic_cast<IntegralType*>(ret.unsafeData());

  ///We have determined the resulting type now. If both sides are constant, also evaluate the resulting value.
  if(ret && retIntegral && leftConstantIntegral && rightConstantIntegral) {
    switch( retIntegral->dataType() ) {
      case IntegralType::TypeFloat:
      {
        ConstantBinaryExpressionEvaluator<float> evaluator( retIntegral->dataType(), retIntegral->modifiers(), tokenKind, leftConstantIntegral, rightConstantIntegral );
        return evaluator.createType();
      }
      case IntegralType::TypeDouble:
      {
        ConstantBinaryExpressionEvaluator<double> evaluator( retIntegral->dataType(), retIntegral->modifiers(), tokenKind, leftConstantIntegral, rightConstantIntegral );
        return evaluator.createType();
      }
      default:
        if( leftConstantIntegral->modifiers() & AbstractType::UnsignedModifier ) {
          ConstantBinaryExpressionEvaluator<quint64> evaluator( retIntegral->dataType(), retIntegral->modifiers(), tokenKind, leftConstantIntegral, rightConstantIntegral);
          return evaluator.createType();
        } else {
          ConstantBinaryExpressionEvaluator<qint64> evaluator( retIntegral->dataType(), retIntegral->modifiers(), tokenKind, leftConstantIntegral, rightConstantIntegral);
          return evaluator.createType();
        }
        break;
    }
  }
  return ret;
}