1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
|
/* This file is part of KDevelop
Copyright 2008 David Nolden <david.nolden.kdevelop@art-master.de>
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public
License version 2 as published by the Free Software Foundation.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public License
along with this library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA.
*/
#include "builtinoperators.h"
#include "cpptypes.h"
#include <language/duchain/types/constantintegraltype.h>
#include "parser/tokens.h"
using namespace KDevelop;
/** A helper-class for evaluating constant binary expressions under different types(int, float, etc.) */
template<class Type>
struct ConstantBinaryExpressionEvaluator {
Type endValue;
uint type;
uint modifier;
/**
* Writes the results into endValue, type, and modifier.
* */
ConstantBinaryExpressionEvaluator( uint _type, uint _modifier, int tokenKind, ConstantIntegralType* left, ConstantIntegralType* right ) {
endValue = 0;
type = _type;
modifier = _modifier;
evaluateSpecialTokens(tokenKind, left, right);
switch( tokenKind ) {
case '+':
endValue = left->ConstantIntegralType::value<Type>() + right->ConstantIntegralType::value<Type>();
break;
case '-':
endValue = left->ConstantIntegralType::value<Type>() - right->ConstantIntegralType::value<Type>();
break;
case '*':
endValue = left->ConstantIntegralType::value<Type>() * right->ConstantIntegralType::value<Type>();
break;
case '/':
if(right->ConstantIntegralType::value<Type>())
endValue = left->ConstantIntegralType::value<Type>() / right->ConstantIntegralType::value<Type>();
else
kDebug() << "bad division operator" << left->ConstantIntegralType::value<Type>() << "/" << right->ConstantIntegralType::value<Type>();
break;
case '=':
endValue = right->ConstantIntegralType::value<Type>();
break;
case '<':
endValue = left->ConstantIntegralType::value<Type>() < right->ConstantIntegralType::value<Type>();
type = IntegralType::TypeBoolean;
break;
case '>':
endValue = left->ConstantIntegralType::value<Type>() > right->ConstantIntegralType::value<Type>();
type = IntegralType::TypeBoolean;
break;
case Token_assign:
endValue = right->ConstantIntegralType::value<Type>();
break;
case Token_eq:
endValue = left->ConstantIntegralType::value<Type>() == right->ConstantIntegralType::value<Type>();
type = IntegralType::TypeBoolean;
break;
case Token_not_eq:
endValue = left->ConstantIntegralType::value<Type>() != right->ConstantIntegralType::value<Type>();
type = IntegralType::TypeBoolean;
break;
case Token_leq:
endValue = left->ConstantIntegralType::value<Type>() <= right->ConstantIntegralType::value<Type>();
type = IntegralType::TypeBoolean;
break;
case Token_geq:
endValue = left->ConstantIntegralType::value<Type>() >= right->ConstantIntegralType::value<Type>();
type = IntegralType::TypeBoolean;
break;
}
}
//This function is used to disable some operators on bool and double values
void evaluateSpecialTokens( int tokenKind, ConstantIntegralType* left, ConstantIntegralType* right ) {
switch( tokenKind ) {
case '%':
if(right->ConstantIntegralType::value<Type>())
endValue = left->ConstantIntegralType::value<Type>() % right->ConstantIntegralType::value<Type>();
else
kDebug() << "bad modulo operator" << left->ConstantIntegralType::value<Type>() << "%" << right->ConstantIntegralType::value<Type>();
break;
case '^':
endValue = left->ConstantIntegralType::value<Type>() ^ right->ConstantIntegralType::value<Type>();
break;
case '&':
endValue = left->ConstantIntegralType::value<Type>() & right->ConstantIntegralType::value<Type>();
break;
case '|':
endValue = left->ConstantIntegralType::value<Type>() | right->ConstantIntegralType::value<Type>();
break;
case Token_leftshift:
endValue = left->ConstantIntegralType::value<Type>() << right->ConstantIntegralType::value<Type>();
break;
case Token_rightshift:
endValue = left->ConstantIntegralType::value<Type>() >> right->ConstantIntegralType::value<Type>();
break;
case Token_and:
endValue = left->ConstantIntegralType::value<Type>() && right->ConstantIntegralType::value<Type>();
type = IntegralType::TypeBoolean;
break;
case Token_or:
endValue = left->ConstantIntegralType::value<Type>() || right->ConstantIntegralType::value<Type>();
type = IntegralType::TypeBoolean;
break;
}
}
AbstractType::Ptr createType() {
ConstantIntegralType::Ptr ret( new ConstantIntegralType(type) );
ret->setModifiers(ret->modifiers() & modifier);
ret->ConstantIntegralType::setValue<Type>( endValue );
return AbstractType::Ptr::staticCast(ret);
}
};
template<>
void ConstantBinaryExpressionEvaluator<double>::evaluateSpecialTokens( int tokenKind, ConstantIntegralType* left, ConstantIntegralType* right ) {
Q_UNUSED(tokenKind);
Q_UNUSED(left);
Q_UNUSED(right);
}
template<>
void ConstantBinaryExpressionEvaluator<float>::evaluateSpecialTokens( int tokenKind, ConstantIntegralType* left, ConstantIntegralType* right ) {
Q_UNUSED(tokenKind);
Q_UNUSED(left);
Q_UNUSED(right);
}
AbstractType::Ptr binaryOperatorReturnType(AbstractType::Ptr left, AbstractType::Ptr right, int tokenKind) {
if(!left || !right)
return AbstractType::Ptr();
IntegralType* leftIntegral = dynamic_cast<IntegralType*>(left.unsafeData());
IntegralType* rightIntegral = dynamic_cast<IntegralType*>(right.unsafeData());
PointerType* leftPointer = dynamic_cast<PointerType*>(right.unsafeData());
AbstractType::Ptr ret;
//Constantly evaluate integral expressions
ConstantIntegralType* leftConstantIntegral = dynamic_cast<ConstantIntegralType*>(left.unsafeData());
ConstantIntegralType* rightConstantIntegral = dynamic_cast<ConstantIntegralType*>(right.unsafeData());
if(leftIntegral && rightIntegral) {
if(tokenKind == '+' || tokenKind == '-' || tokenKind == '*' || tokenKind == '/' || tokenKind == '%' || tokenKind == '^' || tokenKind == '&' || tokenKind == '|' || tokenKind == '~' || tokenKind == Token_leftshift || tokenKind == Token_rightshift) {
if(moreExpressiveThan(leftIntegral, rightIntegral))
ret = left;
else
ret = right;
}
if(tokenKind == '<' || tokenKind == '>' || tokenKind == Token_eq || tokenKind == Token_not_eq || tokenKind == Token_leq || tokenKind == Token_geq || tokenKind == Token_not_eq || tokenKind == Token_and || tokenKind == Token_or)
ret = AbstractType::Ptr(new IntegralType(IntegralType::TypeBoolean));
}
if(leftPointer && rightIntegral && (tokenKind == '+' || tokenKind == '-'))
ret = left;
IntegralType* retIntegral = dynamic_cast<IntegralType*>(ret.unsafeData());
///We have determined the resulting type now. If both sides are constant, also evaluate the resulting value.
if(ret && retIntegral && leftConstantIntegral && rightConstantIntegral) {
switch( retIntegral->dataType() ) {
case IntegralType::TypeFloat:
{
ConstantBinaryExpressionEvaluator<float> evaluator( retIntegral->dataType(), retIntegral->modifiers(), tokenKind, leftConstantIntegral, rightConstantIntegral );
return evaluator.createType();
}
case IntegralType::TypeDouble:
{
ConstantBinaryExpressionEvaluator<double> evaluator( retIntegral->dataType(), retIntegral->modifiers(), tokenKind, leftConstantIntegral, rightConstantIntegral );
return evaluator.createType();
}
default:
if( leftConstantIntegral->modifiers() & AbstractType::UnsignedModifier ) {
ConstantBinaryExpressionEvaluator<quint64> evaluator( retIntegral->dataType(), retIntegral->modifiers(), tokenKind, leftConstantIntegral, rightConstantIntegral);
return evaluator.createType();
} else {
ConstantBinaryExpressionEvaluator<qint64> evaluator( retIntegral->dataType(), retIntegral->modifiers(), tokenKind, leftConstantIntegral, rightConstantIntegral);
return evaluator.createType();
}
break;
}
}
return ret;
}
|