File: overloadresolution.cpp

package info (click to toggle)
kdevelop 4%3A4.3.1-3
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 18,844 kB
  • sloc: cpp: 91,758; python: 1,095; lex: 422; ruby: 120; sh: 114; xml: 42; makefile: 38
file content (730 lines) | stat: -rw-r--r-- 28,580 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
/*
   Copyright 2007 David Nolden <david.nolden.kdevelop@art-master.de>

   This library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Library General Public
   License version 2 as published by the Free Software Foundation.

   This library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Library General Public License for more details.

   You should have received a copy of the GNU Library General Public License
   along with this library; see the file COPYING.LIB.  If not, write to
   the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
   Boston, MA 02110-1301, USA.
*/

#include "overloadresolution.h"
#include "cppduchain/typeutils.h"
#include <language/duchain/ducontext.h>
#include <language/duchain/declaration.h>
#include <language/duchain/indexedstring.h>
#include <language/duchain/classfunctiondeclaration.h>
#include "cppduchain/cpptypes.h"
#include "viablefunctions.h"
#include "templatedeclaration.h"
#include "templateparameterdeclaration.h"
#include "typeutils.h"
#include <QtAlgorithms>
#include "adlhelper.h"
#include <language/duchain/persistentsymboltable.h>

using namespace Cpp;
using namespace KDevelop;

const bool allowADL = true;

// uncomment to get debugging info on ADL - very expensive on parsing
// #define DEBUG_ADL

OverloadResolver::OverloadResolver( DUContextPointer context, TopDUContextPointer topContext, Constness constness, bool forceIsInstance )
: m_context( context )
, m_topContext( topContext )
, m_worstConversionRank( NoMatch )
, m_forceIsInstance( forceIsInstance )
, m_constness(constness)
{

}

Declaration* OverloadResolver::resolveConstructor( const ParameterList& params, bool implicit, bool noUserDefinedConversion )
{
  if ( !m_context || !m_topContext )
    return 0;

  QList<Declaration*> goodDeclarations;
  Identifier id = m_context->localScopeIdentifier().last();
  id.clearTemplateIdentifiers();
  QList<Declaration*> declarations = m_context->findLocalDeclarations( id, CursorInRevision::invalid(), m_topContext.data(), AbstractType::Ptr(), DUContext::OnlyFunctions );

  for ( QList<Declaration*>::iterator it = declarations.begin(); it != declarations.end(); ++it )
  {
    if (( *it )->indexedType() )
    {
      FunctionType::Ptr function = ( *it )->abstractType().cast<FunctionType>();
      ClassFunctionDeclaration* functionDeclaration = dynamic_cast<ClassFunctionDeclaration*>( *it );
      //Q_ASSERT();

      if ( functionDeclaration /*&& functionDeclaration->isConstructor()*/ ) //Test not needed, because name == classname
      {
        if ( function->indexedArgumentsSize() >= static_cast<uint>(params.parameters.size()) )
        {
          if ( !implicit || !functionDeclaration->isExplicit() )
            goodDeclarations << *it;
        }
      }
    }
  }

  // no ADL possible when resolving constructors
  return resolveList( params, goodDeclarations, noUserDefinedConversion );
}

Declaration* OverloadResolver::resolve( const ParameterList& params, const QualifiedIdentifier& functionName, bool noUserDefinedConversion )
{
  if ( !m_context || !m_topContext )
    return 0;

  QList<Declaration*> declarations = m_context->findDeclarations( functionName, CursorInRevision::invalid(), AbstractType::Ptr(), m_topContext.data() );

  // without ADL findDeclarations may fail so skip ADL there and do it here
  Declaration * resolvedDecl = resolveList( params, declarations, noUserDefinedConversion );

  if (!resolvedDecl && functionName.count() == 1) {
    // start ADL lookup
    
    QList<Declaration*> adlDecls = computeADLCandidates( params, functionName );
    
    resolvedDecl = resolveList( params, adlDecls, noUserDefinedConversion );
#ifdef DEBUG_ADL
    if (resolvedDecl)
      kDebug() << "ADL found " << resolvedDecl->toString();
    else
      kDebug() << "ADL failed";
#endif
  }
  return resolvedDecl;
}

uint OverloadResolver::worstConversionRank()
{
  return m_worstConversionRank;
}

void OverloadResolver::expandDeclarations( const QList<Declaration*>& declarations, QSet<Declaration*>& newDeclarations )
{
  for ( QList<Declaration*>::const_iterator it = declarations.constBegin(); it != declarations.constEnd(); ++it )
  {
    Declaration* decl = *it;

    if ( CppClassType::Ptr klass = TypeUtils::realType( decl->abstractType(), m_topContext.data() ).cast<CppClassType>() )
    {
      if ( decl->kind() == Declaration::Instance || m_forceIsInstance )
      {
        //Instances of classes should be substituted with their operator() members
        QList<Declaration*> decls;
        TypeUtils::getMemberFunctions( klass, m_topContext.data(), decls, "operator()", klass->modifiers() & AbstractType::ConstModifier );

        foreach( Declaration* decl, decls )
        newDeclarations.insert( decl );
      }
      else
      {
        //Classes should be substituted with their constructors
        QList<Declaration*> decls;
        TypeUtils::getConstructors( klass, m_topContext.data(), decls );

        foreach( Declaration* decl, decls )
        newDeclarations.insert( decl );
      }
    }
    else
    {
      newDeclarations.insert( *it );
    }
  }
}

void OverloadResolver::expandDeclarations( const QList<QPair<OverloadResolver::ParameterList, Declaration*> >& declarations, QHash<Declaration*, OverloadResolver::ParameterList>& newDeclarations )
{
  for ( QList<QPair<OverloadResolver::ParameterList, Declaration*> >::const_iterator it = declarations.constBegin(); it != declarations.constEnd(); ++it )
  {
    QPair<OverloadResolver::ParameterList, Declaration*> decl = *it;

    if ( CppClassType::Ptr klass = TypeUtils::realType( decl.second->abstractType(), m_topContext.data() ).cast<CppClassType>() )
    {
      if ( decl.second->kind() == Declaration::Instance || m_forceIsInstance )
      {
        //Instances of classes should be substituted with their operator() members
        QList<Declaration*> functions;
        TypeUtils::getMemberFunctions( klass, m_topContext.data(), functions, "operator()", klass->modifiers() & AbstractType::ConstModifier );
        foreach( Declaration* f, functions )
        newDeclarations.insert( f, decl.first );
      }
      else
      {
        //Classes should be substituted with their constructors
        QList<Declaration*> functions;
        TypeUtils::getConstructors( klass, m_topContext.data(), functions );
        foreach( Declaration* f, functions )
        newDeclarations.insert( f, decl.first );
      }
    }
    else
    {
      newDeclarations.insert( it->second, it->first );
    }
  }
}

Declaration* OverloadResolver::resolveList( const ParameterList& params, const QList<Declaration*>& declarations, bool noUserDefinedConversion )
{
  if ( !m_context || !m_topContext )
    return 0;

  ///Iso c++ draft 13.3.3
  m_worstConversionRank = ExactMatch;


  ///First step: Replace class-instances with operator() functions, and pure classes with their constructors
  QSet<Declaration*> newDeclarations;
  expandDeclarations( declarations, newDeclarations );

  ///Second step: Find best viable function
  ViableFunction bestViableFunction( m_topContext.data() );

  for ( QSet<Declaration*>::const_iterator it = newDeclarations.constBegin(); it != newDeclarations.constEnd(); ++it )
  {
    Declaration* decl = applyImplicitTemplateParameters( params, *it );
    if ( !decl )
      continue;

    ViableFunction viable( m_topContext.data(), decl, m_constness, noUserDefinedConversion );
    viable.matchParameters( params );

    if ( viable.isBetter( bestViableFunction ) )
    {
      bestViableFunction = viable;
      m_worstConversionRank = bestViableFunction.worstConversion();
    }
  }

  if ( bestViableFunction.isViable() )
    return bestViableFunction.declaration().data();
  else {
    return 0;
  }
}

QList< ViableFunction > OverloadResolver::resolveListOffsetted( const ParameterList& params, const QList<QPair<OverloadResolver::ParameterList, Declaration*> >& declarations, bool partial )
{
  if ( !m_context || !m_topContext )
    return QList<ViableFunction>();

  ///Iso c++ draft 13.3.3
  m_worstConversionRank = ExactMatch;

  ///First step: Replace class-instances with operator() functions, and pure classes with their constructors
  QHash<Declaration*, OverloadResolver::ParameterList> newDeclarations;
  expandDeclarations( declarations, newDeclarations );

  ///Second step: Find best viable function
  QList<ViableFunction> viableFunctions;

  for ( QHash<Declaration*, OverloadResolver::ParameterList>::const_iterator it = newDeclarations.constBegin(); it != newDeclarations.constEnd(); ++it )
  {
    ParameterList mergedParams = it.value();
    mergedParams.parameters += params.parameters;
    
    Declaration* decl = applyImplicitTemplateParameters( mergedParams, it.key() );
    if ( !decl )
      continue;
    
    ViableFunction viable( m_topContext.data(), decl, m_constness );
    viable.matchParameters( mergedParams, partial );

    viableFunctions << viable;
  }

  qSort( viableFunctions );

  return viableFunctions;
}

ViableFunction OverloadResolver::resolveListViable( const ParameterList& params, const QList<QPair<OverloadResolver::ParameterList, Declaration*> >& declarations, bool partial )
{
  if ( !m_context || !m_topContext )
    return ViableFunction();

  ///Iso c++ draft 13.3.3
  m_worstConversionRank = ExactMatch;

  ///First step: Replace class-instances with operator() functions, and pure classes with their constructors
  QHash<Declaration*, OverloadResolver::ParameterList> newDeclarations;
  expandDeclarations( declarations, newDeclarations );

  ///Second step: Find best viable function
  ViableFunction bestViableFunction(m_topContext.data());

  for ( QHash<Declaration*, OverloadResolver::ParameterList>::const_iterator it = newDeclarations.constBegin(); it != newDeclarations.constEnd(); ++it )
  {
    ParameterList mergedParams = it.value();
    mergedParams.parameters += params.parameters;
    
    Declaration* decl = applyImplicitTemplateParameters( mergedParams, it.key() );
    if ( !decl )
      continue;
    
    ViableFunction viable( m_topContext.data(), decl, m_constness );
    viable.matchParameters( mergedParams, partial );

    if ( viable.isBetter( bestViableFunction ) )
    {
      bestViableFunction = viable;
      m_worstConversionRank = bestViableFunction.worstConversion();
    }
  }

  return bestViableFunction;
}

Declaration* OverloadResolver::applyImplicitTemplateParameters( const ParameterList& params, Declaration* declaration ) const
{
  TemplateDeclaration* tempDecl = dynamic_cast<TemplateDeclaration*>( declaration );
  if ( !tempDecl )
    return declaration;

  KDevelop::DUContext* templateContext = tempDecl->templateParameterContext();
  if ( !templateContext )
  {
    //May be just within a template, but without own template parameters
    return declaration;
  }

  FunctionType::Ptr functionType = declaration->type<FunctionType>();
  if ( !functionType )
  {
    kDebug( 9007 ) << "Template function has no function type";
    return declaration;
  }

  const IndexedType* arguments( functionType->indexedArguments() );
  if ( static_cast<uint>(params.parameters.count()) > functionType->indexedArgumentsSize() )
    return declaration;

  //templateContext contains the template-parameters that we need to find instantiations for

  QMap<IndexedString, AbstractType::Ptr> instantiatedParameters; //Here we store the values assigned to each template-parameter

  foreach( Declaration* decl, templateContext->localDeclarations() )
  {
    CppTemplateParameterType::Ptr paramType = decl->abstractType().cast<CppTemplateParameterType>();
    if ( paramType )  //Parameters that are not of type CppTemplateParameterType are already assigned.
    {
      instantiatedParameters[decl->identifier().identifier()] = AbstractType::Ptr();
    }
  }

  if ( instantiatedParameters.isEmpty() )
    return declaration; //All parameters already have a type assigned

  for ( int a = 0; a < params.parameters.count(); a++ )
    matchParameterTypes( params.parameters[a].type, arguments[a].abstractType(), instantiatedParameters );

  bool allInstantiated = true;
  for ( QMap<IndexedString, AbstractType::Ptr>::const_iterator it = instantiatedParameters.constBegin(); it != instantiatedParameters.constEnd(); ++it )
    if ( !( *it ) )
    {
      allInstantiated = false;
    }

  if ( allInstantiated )
  {
    //We have new template-parameters at hand, we can specialize now.
    Cpp::InstantiationInformation instantiateWith( tempDecl->instantiatedWith().information() );
    instantiateWith.templateParametersList().clear();

    foreach( Declaration* decl, templateContext->localDeclarations() )
    {
      AbstractType::Ptr type;

      CppTemplateParameterType::Ptr paramType = decl->abstractType().cast<CppTemplateParameterType>();
      if ( paramType ) //Take the type we have assigned.
        type = instantiatedParameters[decl->identifier().identifier()];
      else
        type = decl->abstractType(); //Take the type that was available already earlier

      instantiateWith.addTemplateParameter( type );
    }

    return tempDecl->instantiate( instantiateWith, m_topContext.data() );
  }

  return declaration;
}

inline uint incrementIfSuccessful( uint val )
{
  if ( val )
    return 1 + val;
  return 0;
}

#define ifDebugOverloadResolution(x)
// #define ifDebugOverloadResolution(x) x

uint OverloadResolver::matchParameterTypes( const AbstractType::Ptr& argumentType, const AbstractType::Ptr& parameterType, QMap<IndexedString, AbstractType::Ptr>& instantiatedTypes, bool keepValue ) const
{

  if ( !argumentType && !parameterType )
    return 1;
  if ( !argumentType || !parameterType )
    return 0;

  ifDebugOverloadResolution( kDebug() << "matching" << argumentType->toString() << "to" << parameterType->toString(); )

  if ( instantiatedTypes.isEmpty() )
    return 1;

  DelayedType::Ptr delayed = parameterType.cast<DelayedType>();
  if ( delayed )
    return incrementIfSuccessful( matchParameterTypes( argumentType, delayed->identifier(), instantiatedTypes , keepValue ) );

  ///In case of references on both sides, match the target-types
  ReferenceType::Ptr argumentRef = argumentType.cast<ReferenceType>();
  ReferenceType::Ptr parameterRef = parameterType.cast<ReferenceType>();

  if ( argumentRef && parameterRef )
    return incrementIfSuccessful( matchParameterTypes( argumentRef->baseType(), parameterRef->baseType(), instantiatedTypes, keepValue ) );
  else if ( argumentRef )
    return incrementIfSuccessful( matchParameterTypes( argumentRef->baseType(), parameterType, instantiatedTypes, keepValue ) );
  else if ( parameterRef )
    return incrementIfSuccessful( matchParameterTypes( argumentType, parameterRef->baseType(), instantiatedTypes, keepValue ) );

  ///In case of pointers on both sides, match the target-types
  PointerType::Ptr argumentPointer = argumentType.cast<PointerType>();
  PointerType::Ptr parameterPointer = parameterType.cast<PointerType>();

  if ( argumentPointer && parameterPointer && (( argumentPointer->modifiers() & AbstractType::ConstModifier ) == ( parameterPointer->modifiers() & AbstractType::ConstModifier ) ) )
    return incrementIfSuccessful( matchParameterTypes( argumentPointer->baseType(), parameterPointer->baseType(), instantiatedTypes, keepValue ) );

  ///In case of arrays on both sides, match the target-types
    ArrayType::Ptr argumentArray = argumentType.cast<ArrayType>();
    ArrayType::Ptr parameterArray = parameterType.cast<ArrayType>();
    if ( argumentArray && parameterArray && (( argumentArray->modifiers() & AbstractType::ConstModifier ) == ( parameterArray->modifiers() & AbstractType::ConstModifier ) ) ) {
      return incrementIfSuccessful( matchParameterTypes( argumentArray->elementType(), parameterArray->elementType(), instantiatedTypes, keepValue ) );
    }

  if ( CppTemplateParameterType::Ptr templateParam = parameterType.cast<CppTemplateParameterType>() )
  {
    ///@todo Allow template-parameters with even more template-parameters declared
    //Directly assign argumentType to the template parameter
    Declaration* decl = templateParam->declaration( m_topContext.data() );
    if ( decl )
    {
      IndexedString id = decl->identifier().identifier();
      if ( instantiatedTypes[id].isNull() )
      {
        instantiatedTypes[id] = argumentType;
        return 1;
      }
      else if ( instantiatedTypes[id]->equals( argumentType.unsafeData() ) )
      {
        return 1;
      }
      else
      {
        //Mismatch, another type was already assigned
        return 0;
      }
    }
  }

  ///Match assigned template-parameters, for example when matching QList<int> to QList<T>, assign int to T.
  const IdentifiedType* identifiedArgument = dynamic_cast<const IdentifiedType*>( argumentType.unsafeData() );
  const IdentifiedType* identifiedParameter = dynamic_cast<const IdentifiedType*>( parameterType.unsafeData() );

  if ( identifiedArgument && identifiedParameter )
  {
    TemplateDeclaration* argumentTemplateDeclaration = dynamic_cast<TemplateDeclaration*>( identifiedArgument->declaration( m_topContext.data() ) );
    TemplateDeclaration* parameterTemplateDeclaration = dynamic_cast<TemplateDeclaration*>( identifiedParameter->declaration( m_topContext.data() ) );
    if ( !argumentTemplateDeclaration || !parameterTemplateDeclaration )
      return 1;

    if ( argumentTemplateDeclaration->instantiatedFrom() == parameterTemplateDeclaration->instantiatedFrom() && argumentTemplateDeclaration->instantiatedFrom() )
    {
      InstantiationInformation argumentInstantiatedWith = argumentTemplateDeclaration->instantiatedWith().information();
      InstantiationInformation parameterInstantiatedWith = parameterTemplateDeclaration->instantiatedWith().information();

      if ( argumentInstantiatedWith.templateParametersSize() != parameterInstantiatedWith.templateParametersSize() )
        return 0;

      uint matchDepth = 1;

      for ( uint a = 0; a < argumentInstantiatedWith.templateParametersSize(); ++a )
      {
        uint localMatchDepth = matchParameterTypes( argumentInstantiatedWith.templateParameters()[a].abstractType(), parameterInstantiatedWith.templateParameters()[a].abstractType(), instantiatedTypes, keepValue );
        if ( !localMatchDepth )
          return 0;
        matchDepth += localMatchDepth;
      }

      return matchDepth;
    }
  }

  return 1;
}

QList<Declaration *> OverloadResolver::computeADLCandidates( const ParameterList& params, const QualifiedIdentifier& identifier )
{
  if(!allowADL || identifier.count() != 1 )
    return QList<Declaration *>();

  // Don't try to do ADL if there are delayed/unresolved types involved,
  // because then we cannot get a proper match as to ViableFunction anyway
  foreach( const Parameter & param, params.parameters )
      if( fastCast<DelayedType*>(param.type.unsafeData()) )
          return QList<Declaration *>();
  
  ADLHelper adlHelper( m_context, m_topContext );
  
  foreach( const Parameter & param, params.parameters )
    adlHelper.addArgument( param );

  QSet<QualifiedIdentifier> adlNamespaces = adlHelper.associatedNamespaces();

#ifdef DEBUG_ADL
  foreach( QualifiedIdentifier ns, adlNamespaces )
  {
    kDebug() << "  ADL found namespace: " << ns.toString();
  }
#endif

  QList<Declaration*> adlDecls;

#ifdef DEBUG_ADL
    kDebug() << "  ADL candidates for: " << identifier.toString();
#endif

  foreach( QualifiedIdentifier adlFunctionName, adlNamespaces )
  {
    adlFunctionName += identifier;
    
    // By using DeclarationId, we prevent a lot of complex logic which we don't require, as we
    // already have the fully qualified scope.
    PersistentSymbolTable::FilteredDeclarationIterator decls =
        PersistentSymbolTable::self().getFilteredDeclarations(IndexedQualifiedIdentifier(adlFunctionName), m_topContext->recursiveImportIndices());
    
    for(; decls; ++decls)
    {
      Declaration* decl = decls->data();
      if(decl && decl->isFunctionDeclaration()) {
      adlDecls << decl;
#ifdef DEBUG_ADL
    kDebug() << "    ADL candidate: " << adlFunctionName << decl->toString();
#endif      
      }
    }
  }

  return adlDecls;
}

AbstractType::Ptr getContainerType( AbstractType::Ptr type, int depth, TopDUContext* topContext )
{
  for ( int a = 0; a < depth; a++ )
  {
    AbstractType::Ptr real = TypeUtils::realType( type, topContext );
    IdentifiedType* idType = dynamic_cast<IdentifiedType*>( real.unsafeData() );
    if ( !idType )
      return AbstractType::Ptr();

    Declaration* decl = idType->declaration(topContext);
    if(!decl || !decl->context())
      return AbstractType::Ptr();

    Declaration* containerDecl = decl->context()->owner();

    if ( containerDecl )
      type = containerDecl->abstractType();
    else
      return AbstractType::Ptr();
  }
  return type;
}

uint OverloadResolver::matchParameterTypes( AbstractType::Ptr argumentType, const IndexedTypeIdentifier& parameterType, QMap<IndexedString, AbstractType::Ptr>& instantiatedTypes, bool keepValue ) const
{
  ifDebugOverloadResolution( kDebug() << "1 matching" << argumentType->toString() << "to" << parameterType.toString() << parameterType.pointerDepth(); )
  if ( !argumentType )
    return 1;
  if ( instantiatedTypes.isEmpty() )
    return 1;

  QualifiedIdentifier parameterQid( parameterType.identifier().identifier() );

  if ( parameterQid.isEmpty() )
    return 1;

  {
    ReferenceType::Ptr argumentRef = argumentType.cast<ReferenceType>();

    if ( argumentRef && parameterType.isReference() )
      argumentType = argumentRef->baseType();
    else if ( parameterType.isReference() )
      return 0; //Reference on right side, but not on left
  }
  {
    PointerType::Ptr argumentPointer = argumentType.cast<PointerType>();
    int cnt = 0; ///@todo correct ordering of the pointers and their constnesses
    while ( argumentPointer && cnt < parameterType.pointerDepth() )
    {

      ++cnt;
      argumentType = argumentPointer->baseType();
      argumentPointer = argumentType.cast<PointerType>();
    }
    if ( cnt != parameterType.pointerDepth() || !argumentType )
    {
      return 0; //Do not have the needed count of pointers
    }
  }

  uint matchDepth = 1;

  if (( argumentType->modifiers() & AbstractType::ConstModifier ) && parameterType.isConstant() )
    ++matchDepth;

  for ( int a = 0; a < parameterQid.count(); ++a )
  {
    ///@todo Think about this
    AbstractType::Ptr pType = getContainerType( argumentType, parameterQid.count() - a - 1, m_topContext.data() );
    uint localDepth = matchParameterTypes( pType, parameterQid.at( a ), instantiatedTypes, keepValue );
//     if(!localDepth)
//       return 0;
    matchDepth += localDepth;
  }
  return matchDepth;
}

uint OverloadResolver::matchParameterTypes( AbstractType::Ptr argumentType, const Identifier& parameterType, QMap<IndexedString, AbstractType::Ptr>& instantiatedTypes, bool keepValue ) const
{
  ifDebugOverloadResolution( kDebug() << "2 matching" << argumentType->toString() << "to" << parameterType.toString(); )

  if ( !argumentType )
    return 1;
  if ( instantiatedTypes.isEmpty() )
    return 1;


  if ( instantiatedTypes.contains( parameterType.identifier() ) )
  {
    if ( !keepValue ) //Extract the actual type without the value
      if ( ConstantIntegralType::Ptr integral = argumentType.cast<ConstantIntegralType>() )
        argumentType = AbstractType::Ptr( new IntegralType( *integral ) );

    instantiatedTypes[parameterType.identifier()] = argumentType;
    return 1;
  }

  IdentifiedType* identifiedArgument = dynamic_cast<IdentifiedType*>( argumentType.unsafeData() );
  if ( !identifiedArgument )
    return 0;

  if ( identifiedArgument->qualifiedIdentifier().last().identifier() != parameterType.identifier() )
  {
    return 0;
  }

  TemplateDeclaration* argumentTemplateDeclaration = dynamic_cast<TemplateDeclaration*>( identifiedArgument->declaration( m_topContext.data() ) );

  uint matchDepth = 1;

  if ( argumentTemplateDeclaration && parameterType.templateIdentifiersCount() )
  {
    DUContext* argumentTemplateDeclarationContext = argumentTemplateDeclaration->templateParameterContext();

    if ( argumentTemplateDeclarationContext )
    {
      int matchLength = argumentTemplateDeclarationContext->localDeclarations().count();
      if ( parameterType.templateIdentifiersCount() < static_cast<uint>(matchLength) )
        matchLength = parameterType.templateIdentifiersCount();

      for ( int a = 0; a < matchLength; ++a )
        matchDepth += matchParameterTypes( argumentTemplateDeclarationContext->localDeclarations()[a]->abstractType(), parameterType.templateIdentifier( a ), instantiatedTypes, keepValue );
    }
    else
    {
      kDebug( 9007 ) << "Template-declaration missing template-parameter context";
    }
  }

  return matchDepth;
}

///Version of matchParameters that would be correct if we used CppTemplateParameterType* instead of DelayedType. Maybe we should doing that some time, it's more correct, and more complicated.
// bool OverloadResolver::matchParameterTypes(AbstractType* _argumentType, AbstractType* _parameterType, QMap<CppTemplateParameterType*, AbstractType::Ptr>& instantiatedTypes) const
// {
//   if(!_argumentType || !_parameterType)
//     return true;
//   if(instantiatedTypes.isEmpty())
//     return true;
//
//   AbstractType::Ptr argumentType = TypeUtils::resolvedType(_argumentType, m_topContext.data());
//   AbstractType::Ptr parameterType = TypeUtils::resolvedType(_parameterType, m_topContext.data());
//
//   CppTemplateParameterType* temp = dynamic_cast<CppTemplateParameterType*>(parameterType.data());
//   if(temp) {
//     if( instantiatedTypes.contains(temp) ) {
//       if( instantiatedTypes[temp].data() == 0 ) {
//         instantiatedTypes[temp] = argumentType;
//       }else{
//         ///@todo compare if the type already instantiated for this parameter is the same as argumentType, and else fail.
//       }
//     }
//     return true;
//   }
//
//   ///Match assigned template-parameters, for example when matching QList<int> to QList<T>, assign int to T.
//   IdentifiedType* identifiedArgument = dynamic_cast<IdentifiedType*>(argumentType.data());
//   IdentifiedType* identifiedParameter = dynamic_cast<IdentifiedType*>(parameterType.data());
//
//   if( identifiedArgument && identifiedParameter )
//   {
//     if( identifiedArgument->identifier() == identifiedParameter->identifier() )
//     {
//       TemplateDeclaration* argumentTemplateDeclaration = dynamic_cast<TemplateDeclaration*>(identifiedArgument->declaration());
//       TemplateDeclaration* parameterTemplateDeclaration = dynamic_cast<TemplateDeclaration*>(identifiedParameter->declaration());
//
//       if( argumentTemplateDeclaration && parameterTemplateDeclaration )
//       {
//         DUContext* argumentTemplateDeclarationContext = argumentTemplateDeclaration->templateParameterContext();
//         DUContext* parameterTemplateDeclarationContext = parameterTemplateDeclaration->templateParameterContext();
//
//         if( argumentTemplateDeclarationContext->localDeclarations().count() == parameterTemplateDeclarationContext->localDeclarations().count() ) {
//           for( int a = 0; a < argumentTemplateDeclarationContext->localDeclarations().count(); ++a )
//             matchParameterTypes( argumentTemplateDeclarationContext->localDeclarations()[a]->abstractType().data(), parameterTemplateDeclarationContext->localDeclarations()[a]->abstractType().data(), instantiatedTypes );
//         }
//       }
//     }
//   }
//
//   ///In case of references on both sides, match the target-types
//   ReferenceType* argumentRef = dynamic_cast<ReferenceType*>(argumentType.data());
//   ReferenceType* parameterRef = dynamic_cast<ReferenceType*>(parameterType.data());
//
//   if( argumentRef && parameterRef )
//     return matchParameterTypes( argumentRef->baseType().data(), parameterRef->baseType().data(), instantiatedTypes );
//
//   ///In case of pointers on both sides, match the target-types
//   PointerType* argumentPointer = dynamic_cast<PointerType*>(argumentType.data());
//   PointerType* parameterPointer = dynamic_cast<PointerType*>(parameterType.data());
//
//   if( argumentPointer && parameterPointer )
//     return matchParameterTypes( argumentPointer->baseType().data(), parameterPointer->baseType().data(), instantiatedTypes );
//
//   return true;
// }