1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
|
/*
KeePass Password Safe - The Open-Source Password Manager
Copyright (C) 2003-2012 Dominik Reichl <dominik.reichl@t-online.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
using System;
using System.Diagnostics;
using System.Security.Cryptography;
using KeePassLib.Cryptography.Cipher;
namespace KeePassLib.Cryptography
{
/// <summary>
/// Algorithms supported by <c>CryptoRandomStream</c>.
/// </summary>
public enum CrsAlgorithm
{
/// <summary>
/// Not supported.
/// </summary>
Null = 0,
/// <summary>
/// A variant of the ARCFour algorithm (RC4 incompatible).
/// </summary>
ArcFourVariant = 1,
/// <summary>
/// Salsa20 stream cipher algorithm.
/// </summary>
Salsa20 = 2,
Count = 3
}
/// <summary>
/// A random stream class. The class is initialized using random
/// bytes provided by the caller. The produced stream has random
/// properties, but for the same seed always the same stream
/// is produced, i.e. this class can be used as stream cipher.
/// </summary>
public sealed class CryptoRandomStream
{
private CrsAlgorithm m_crsAlgorithm;
private byte[] m_pbState = null;
private byte m_i = 0;
private byte m_j = 0;
private Salsa20Cipher m_salsa20 = null;
/// <summary>
/// Construct a new cryptographically secure random stream object.
/// </summary>
/// <param name="genAlgorithm">Algorithm to use.</param>
/// <param name="pbKey">Initialization key. Must not be <c>null</c> and
/// must contain at least 1 byte.</param>
/// <exception cref="System.ArgumentNullException">Thrown if the
/// <paramref name="pbKey" /> parameter is <c>null</c>.</exception>
/// <exception cref="System.ArgumentException">Thrown if the
/// <paramref name="pbKey" /> parameter contains no bytes or the
/// algorithm is unknown.</exception>
public CryptoRandomStream(CrsAlgorithm genAlgorithm, byte[] pbKey)
{
m_crsAlgorithm = genAlgorithm;
Debug.Assert(pbKey != null); if(pbKey == null) throw new ArgumentNullException("pbKey");
uint uKeyLen = (uint)pbKey.Length;
Debug.Assert(uKeyLen != 0); if(uKeyLen == 0) throw new ArgumentException();
if(genAlgorithm == CrsAlgorithm.ArcFourVariant)
{
// Fill the state linearly
m_pbState = new byte[256];
for(uint w = 0; w < 256; ++w) m_pbState[w] = (byte)w;
unchecked
{
byte j = 0, t;
uint inxKey = 0;
for(uint w = 0; w < 256; ++w) // Key setup
{
j += (byte)(m_pbState[w] + pbKey[inxKey]);
t = m_pbState[0]; // Swap entries
m_pbState[0] = m_pbState[j];
m_pbState[j] = t;
++inxKey;
if(inxKey >= uKeyLen) inxKey = 0;
}
}
GetRandomBytes(512); // Increases security, see cryptanalysis
}
else if(genAlgorithm == CrsAlgorithm.Salsa20)
{
SHA256Managed sha256 = new SHA256Managed();
byte[] pbKey32 = sha256.ComputeHash(pbKey);
byte[] pbIV = new byte[]{ 0xE8, 0x30, 0x09, 0x4B,
0x97, 0x20, 0x5D, 0x2A }; // Unique constant
m_salsa20 = new Salsa20Cipher(pbKey32, pbIV);
}
else // Unknown algorithm
{
Debug.Assert(false);
throw new ArgumentException();
}
}
/// <summary>
/// Get <paramref name="uRequestedCount" /> random bytes.
/// </summary>
/// <param name="uRequestedCount">Number of random bytes to retrieve.</param>
/// <returns>Returns <paramref name="uRequestedCount" /> random bytes.</returns>
public byte[] GetRandomBytes(uint uRequestedCount)
{
if(uRequestedCount == 0) return new byte[0];
byte[] pbRet = new byte[uRequestedCount];
if(m_crsAlgorithm == CrsAlgorithm.ArcFourVariant)
{
unchecked
{
for(uint w = 0; w < uRequestedCount; ++w)
{
++m_i;
m_j += m_pbState[m_i];
byte t = m_pbState[m_i]; // Swap entries
m_pbState[m_i] = m_pbState[m_j];
m_pbState[m_j] = t;
t = (byte)(m_pbState[m_i] + m_pbState[m_j]);
pbRet[w] = m_pbState[t];
}
}
}
else if(m_crsAlgorithm == CrsAlgorithm.Salsa20)
m_salsa20.Encrypt(pbRet, pbRet.Length, false);
else { Debug.Assert(false); }
return pbRet;
}
public ulong GetRandomUInt64()
{
byte[] pb = GetRandomBytes(8);
unchecked
{
return ((ulong)pb[0]) | ((ulong)pb[1] << 8) |
((ulong)pb[2] << 16) | ((ulong)pb[3] << 24) |
((ulong)pb[4] << 32) | ((ulong)pb[5] << 40) |
((ulong)pb[6] << 48) | ((ulong)pb[7] << 56);
}
}
#if CRSBENCHMARK
public static string Benchmark()
{
int nRounds = 2000000;
string str = "ArcFour small: " + BenchTime(CrsAlgorithm.ArcFourVariant,
nRounds, 16).ToString() + "\r\n";
str += "ArcFour big: " + BenchTime(CrsAlgorithm.ArcFourVariant,
32, 2 * 1024 * 1024).ToString() + "\r\n";
str += "Salsa20 small: " + BenchTime(CrsAlgorithm.Salsa20,
nRounds, 16).ToString() + "\r\n";
str += "Salsa20 big: " + BenchTime(CrsAlgorithm.Salsa20,
32, 2 * 1024 * 1024).ToString();
return str;
}
private static int BenchTime(CrsAlgorithm cra, int nRounds, int nDataSize)
{
byte[] pbKey = new byte[4] { 0x00, 0x01, 0x02, 0x03 };
int nStart = Environment.TickCount;
for(int i = 0; i < nRounds; ++i)
{
CryptoRandomStream c = new CryptoRandomStream(cra, pbKey);
c.GetRandomBytes((uint)nDataSize);
}
int nEnd = Environment.TickCount;
return (nEnd - nStart);
}
#endif
}
}
|