1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
|
/*
KeePass Password Safe - The Open-Source Password Manager
Copyright (C) 2003-2024 Dominik Reichl <dominik.reichl@t-online.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
using System;
using System.Diagnostics;
#if !KeePassUAP
using System.Security.Cryptography;
#endif
using KeePassLib.Cryptography.Cipher;
using KeePassLib.Utility;
namespace KeePassLib.Cryptography
{
/// <summary>
/// Algorithms supported by <c>CryptoRandomStream</c>.
/// </summary>
public enum CrsAlgorithm
{
/// <summary>
/// Not supported.
/// </summary>
Null = 0,
/// <summary>
/// A variant of the ArcFour algorithm (RC4 incompatible).
/// Insecure; for backward compatibility only.
/// </summary>
ArcFourVariant = 1,
/// <summary>
/// Salsa20 stream cipher algorithm.
/// </summary>
Salsa20 = 2,
/// <summary>
/// ChaCha20 stream cipher algorithm.
/// </summary>
ChaCha20 = 3,
Count = 4
}
/// <summary>
/// A random stream class. The class is initialized using random
/// bytes provided by the caller. The produced stream has random
/// properties, but for the same seed always the same stream
/// is produced, i.e. this class can be used as stream cipher.
/// </summary>
public sealed class CryptoRandomStream : IDisposable
{
private readonly CrsAlgorithm m_alg;
private bool m_bDisposed = false;
private readonly byte[] m_pbKey = null;
private readonly byte[] m_pbIV = null;
private readonly ChaCha20Cipher m_chacha20 = null;
private readonly Salsa20Cipher m_salsa20 = null;
private readonly byte[] m_pbState = null;
private byte m_i = 0;
private byte m_j = 0;
/// <summary>
/// Construct a new cryptographically secure random stream object.
/// </summary>
/// <param name="a">Algorithm to use.</param>
/// <param name="pbKey">Initialization key. Must not be <c>null</c>
/// and must contain at least 1 byte.</param>
public CryptoRandomStream(CrsAlgorithm a, byte[] pbKey)
{
if(pbKey == null) { Debug.Assert(false); throw new ArgumentNullException("pbKey"); }
int cbKey = pbKey.Length;
if(cbKey <= 0)
{
Debug.Assert(false); // Need at least one byte
throw new ArgumentOutOfRangeException("pbKey");
}
m_alg = a;
if(a == CrsAlgorithm.ChaCha20)
{
m_pbKey = new byte[32];
m_pbIV = new byte[12];
using(SHA512Managed h = new SHA512Managed())
{
byte[] pbHash = h.ComputeHash(pbKey);
Array.Copy(pbHash, m_pbKey, 32);
Array.Copy(pbHash, 32, m_pbIV, 0, 12);
MemUtil.ZeroByteArray(pbHash);
}
m_chacha20 = new ChaCha20Cipher(m_pbKey, m_pbIV, true);
}
else if(a == CrsAlgorithm.Salsa20)
{
m_pbKey = CryptoUtil.HashSha256(pbKey);
m_pbIV = new byte[8] { 0xE8, 0x30, 0x09, 0x4B,
0x97, 0x20, 0x5D, 0x2A }; // Unique constant
m_salsa20 = new Salsa20Cipher(m_pbKey, m_pbIV);
}
else if(a == CrsAlgorithm.ArcFourVariant)
{
// Fill the state linearly
m_pbState = new byte[256];
for(int w = 0; w < 256; ++w) m_pbState[w] = (byte)w;
unchecked
{
byte j = 0, t;
int inxKey = 0;
for(int w = 0; w < 256; ++w) // Key setup
{
j += (byte)(m_pbState[w] + pbKey[inxKey]);
t = m_pbState[0]; // Swap entries
m_pbState[0] = m_pbState[j];
m_pbState[j] = t;
++inxKey;
if(inxKey >= cbKey) inxKey = 0;
}
}
GetRandomBytes(512); // Increases security, see cryptanalysis
}
else // Unknown algorithm
{
Debug.Assert(false);
throw new ArgumentOutOfRangeException("a");
}
}
public void Dispose()
{
Dispose(true);
GC.SuppressFinalize(this);
}
private void Dispose(bool disposing)
{
if(disposing)
{
if(m_alg == CrsAlgorithm.ChaCha20)
m_chacha20.Dispose();
else if(m_alg == CrsAlgorithm.Salsa20)
m_salsa20.Dispose();
else if(m_alg == CrsAlgorithm.ArcFourVariant)
{
MemUtil.ZeroByteArray(m_pbState);
m_i = 0;
m_j = 0;
}
else { Debug.Assert(false); }
if(m_pbKey != null) MemUtil.ZeroByteArray(m_pbKey);
if(m_pbIV != null) MemUtil.ZeroByteArray(m_pbIV);
m_bDisposed = true;
}
}
/// <summary>
/// Get <paramref name="uRequestedCount" /> random bytes.
/// </summary>
/// <param name="uRequestedCount">Number of random bytes to retrieve.</param>
/// <returns>Returns <paramref name="uRequestedCount" /> random bytes.</returns>
public byte[] GetRandomBytes(uint uRequestedCount)
{
if(m_bDisposed) throw new ObjectDisposedException(null);
if(uRequestedCount == 0) return MemUtil.EmptyByteArray;
if(uRequestedCount > (uint)int.MaxValue)
throw new ArgumentOutOfRangeException("uRequestedCount");
int cb = (int)uRequestedCount;
byte[] pbRet = new byte[cb];
if(m_alg == CrsAlgorithm.ChaCha20)
m_chacha20.Encrypt(pbRet, 0, cb);
else if(m_alg == CrsAlgorithm.Salsa20)
m_salsa20.Encrypt(pbRet, 0, cb);
else if(m_alg == CrsAlgorithm.ArcFourVariant)
{
unchecked
{
for(int w = 0; w < cb; ++w)
{
++m_i;
m_j += m_pbState[m_i];
byte t = m_pbState[m_i]; // Swap entries
m_pbState[m_i] = m_pbState[m_j];
m_pbState[m_j] = t;
t = (byte)(m_pbState[m_i] + m_pbState[m_j]);
pbRet[w] = m_pbState[t];
}
}
}
else { Debug.Assert(false); }
return pbRet;
}
public ulong GetRandomUInt64()
{
byte[] pb = GetRandomBytes(8);
return MemUtil.BytesToUInt64(pb);
}
internal ulong GetRandomUInt64(ulong uMaxExcl)
{
if(uMaxExcl == 0) { Debug.Assert(false); throw new ArgumentOutOfRangeException("uMaxExcl"); }
ulong uGen, uRem;
do
{
uGen = GetRandomUInt64();
uRem = uGen % uMaxExcl;
}
while((uGen - uRem) > (ulong.MaxValue - (uMaxExcl - 1UL)));
// This ensures that the last number of the block (i.e.
// (uGen - uRem) + (uMaxExcl - 1)) is generatable;
// for signed longs, overflow to negative number:
// while((uGen - uRem) + (uMaxExcl - 1) < 0);
return uRem;
}
#if CRSBENCHMARK
public static string Benchmark()
{
int nRounds = 2000000;
string str = "ArcFour small: " + BenchTime(CrsAlgorithm.ArcFourVariant,
nRounds, 16).ToString() + "\r\n";
str += "ArcFour big: " + BenchTime(CrsAlgorithm.ArcFourVariant,
32, 2 * 1024 * 1024).ToString() + "\r\n";
str += "Salsa20 small: " + BenchTime(CrsAlgorithm.Salsa20,
nRounds, 16).ToString() + "\r\n";
str += "Salsa20 big: " + BenchTime(CrsAlgorithm.Salsa20,
32, 2 * 1024 * 1024).ToString();
return str;
}
private static int BenchTime(CrsAlgorithm a, int nRounds, int cbData)
{
byte[] pbKey = new byte[4] { 0x00, 0x01, 0x02, 0x03 };
int tStart = Environment.TickCount;
for(int i = 0; i < nRounds; ++i)
{
using(CryptoRandomStream crs = new CryptoRandomStream(a, pbKey))
{
crs.GetRandomBytes((uint)cbData);
}
}
return (Environment.TickCount - tStart);
}
#endif
}
}
|