File: resnet_v2.py

package info (click to toggle)
keras-applications 1.0.8%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye
  • size: 600 kB
  • sloc: python: 3,490; makefile: 11; sh: 3
file content (37 lines) | stat: -rw-r--r-- 1,051 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
"""ResNetV2 models for Keras.

# Reference paper

- [Aggregated Residual Transformations for Deep Neural Networks]
  (https://arxiv.org/abs/1611.05431) (CVPR 2017)

# Reference implementations

- [TensorNets]
  (https://github.com/taehoonlee/tensornets/blob/master/tensornets/resnets.py)
- [Torch ResNetV2]
  (https://github.com/facebook/fb.resnet.torch/blob/master/models/preresnet.lua)

"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from . import imagenet_utils
from .imagenet_utils import decode_predictions
from .resnet_common import ResNet50V2
from .resnet_common import ResNet101V2
from .resnet_common import ResNet152V2


def preprocess_input(x, **kwargs):
    """Preprocesses a numpy array encoding a batch of images.

    # Arguments
        x: a 4D numpy array consists of RGB values within [0, 255].
        data_format: data format of the image tensor.

    # Returns
        Preprocessed array.
    """
    return imagenet_utils.preprocess_input(x, mode='tf', **kwargs)