1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
|
import pytest
import random
import six
import numpy as np
import keras_applications
from keras.applications import densenet
from keras.applications import inception_resnet_v2
from keras.applications import inception_v3
from keras.applications import mobilenet
try:
from keras.applications import mobilenet_v2
except ImportError:
from keras.applications import mobilenetv2 as mobilenet_v2
from keras.applications import nasnet
from keras.applications import resnet50
from keras.applications import vgg16
from keras.applications import vgg19
from keras.applications import xception
from keras.preprocessing import image
from keras import backend
from keras import layers
from keras import models
from keras import utils
from multiprocessing import Process, Queue
def keras_modules_injection(base_fun):
def wrapper(*args, **kwargs):
kwargs['backend'] = backend
kwargs['layers'] = layers
kwargs['models'] = models
kwargs['utils'] = utils
return base_fun(*args, **kwargs)
return wrapper
for (name, module) in [('resnet', keras_applications.resnet),
('resnet_v2', keras_applications.resnet_v2),
('resnext', keras_applications.resnext)]:
module.decode_predictions = keras_modules_injection(module.decode_predictions)
module.preprocess_input = keras_modules_injection(module.preprocess_input)
for app in dir(module):
if app[0].isupper():
setattr(module, app, keras_modules_injection(getattr(module, app)))
setattr(keras_applications, name, module)
RESNET_LIST = [keras_applications.resnet.ResNet50,
keras_applications.resnet.ResNet101,
keras_applications.resnet.ResNet152]
RESNETV2_LIST = [keras_applications.resnet_v2.ResNet50V2,
keras_applications.resnet_v2.ResNet101V2,
keras_applications.resnet_v2.ResNet152V2]
RESNEXT_LIST = [keras_applications.resnext.ResNeXt50,
keras_applications.resnext.ResNeXt101]
MOBILENET_LIST = [(mobilenet.MobileNet, mobilenet, 1024),
(mobilenet_v2.MobileNetV2, mobilenet_v2, 1280)]
DENSENET_LIST = [(densenet.DenseNet121, 1024),
(densenet.DenseNet169, 1664),
(densenet.DenseNet201, 1920)]
NASNET_LIST = [(nasnet.NASNetMobile, 1056),
(nasnet.NASNetLarge, 4032)]
def keras_test(func):
"""Function wrapper to clean up after TensorFlow tests.
# Arguments
func: test function to clean up after.
# Returns
A function wrapping the input function.
"""
@six.wraps(func)
def wrapper(*args, **kwargs):
output = func(*args, **kwargs)
if backend.backend() == 'tensorflow' or backend.backend() == 'cntk':
backend.clear_session()
return output
return wrapper
def _get_elephant(target_size):
# For models that don't include a Flatten step,
# the default is to accept variable-size inputs
# even when loading ImageNet weights (since it is possible).
# In this case, default to 299x299.
if target_size[0] is None:
target_size = (299, 299)
img = image.load_img('tests/data/elephant.jpg',
target_size=tuple(target_size))
x = image.img_to_array(img)
return np.expand_dims(x, axis=0)
def _get_output_shape(model_fn, preprocess_input=None):
if backend.backend() == 'cntk':
# Create model in a subprocess so that
# the memory consumed by InceptionResNetV2 will be
# released back to the system after this test
# (to deal with OOM error on CNTK backend).
# TODO: remove the use of multiprocessing from these tests
# once a memory clearing mechanism
# is implemented in the CNTK backend.
def target(queue):
model = model_fn()
if preprocess_input is None:
queue.put(model.output_shape)
else:
x = _get_elephant(model.input_shape[1:3])
x = preprocess_input(x)
queue.put((model.output_shape, model.predict(x)))
queue = Queue()
p = Process(target=target, args=(queue,))
p.start()
p.join()
# The error in a subprocess won't propagate
# to the main process, so we check if the model
# is successfully created by checking if the output shape
# has been put into the queue
assert not queue.empty(), 'Model creation failed.'
return queue.get_nowait()
else:
model = model_fn()
if preprocess_input is None:
return model.output_shape
else:
x = _get_elephant(model.input_shape[1:3])
x = preprocess_input(x)
return (model.output_shape, model.predict(x))
@keras_test
def _test_application_basic(app, last_dim=1000, module=None):
if module is None:
output_shape = _get_output_shape(lambda: app(weights=None))
assert output_shape == (None, None, None, last_dim)
else:
output_shape, preds = _get_output_shape(
lambda: app(weights='imagenet'), module.preprocess_input)
assert output_shape == (None, last_dim)
names = [p[1] for p in module.decode_predictions(preds)[0]]
# Test correct label is in top 3 (weak correctness test).
assert 'African_elephant' in names[:3]
@keras_test
def _test_application_notop(app, last_dim):
output_shape = _get_output_shape(
lambda: app(weights=None, include_top=False))
assert output_shape == (None, None, None, last_dim)
@keras_test
def _test_application_variable_input_channels(app, last_dim):
if backend.image_data_format() == 'channels_first':
input_shape = (1, None, None)
else:
input_shape = (None, None, 1)
output_shape = _get_output_shape(
lambda: app(weights=None, include_top=False, input_shape=input_shape))
assert output_shape == (None, None, None, last_dim)
if backend.image_data_format() == 'channels_first':
input_shape = (4, None, None)
else:
input_shape = (None, None, 4)
output_shape = _get_output_shape(
lambda: app(weights=None, include_top=False, input_shape=input_shape))
assert output_shape == (None, None, None, last_dim)
@keras_test
def _test_app_pooling(app, last_dim):
output_shape = _get_output_shape(
lambda: app(weights=None,
include_top=False,
pooling=random.choice(['avg', 'max'])))
assert output_shape == (None, last_dim)
def test_resnet():
app = random.choice(RESNET_LIST)
module = keras_applications.resnet
last_dim = 2048
_test_application_basic(app, module=module)
_test_application_notop(app, last_dim)
_test_application_variable_input_channels(app, last_dim)
_test_app_pooling(app, last_dim)
def test_resnetv2():
app = random.choice(RESNETV2_LIST)
module = keras_applications.resnet_v2
last_dim = 2048
_test_application_basic(app, module=module)
_test_application_notop(app, last_dim)
_test_application_variable_input_channels(app, last_dim)
_test_app_pooling(app, last_dim)
def test_resnext():
app = random.choice(RESNEXT_LIST)
module = keras_applications.resnext
_test_application_basic(app, module=module)
def test_vgg():
app = random.choice([vgg16.VGG16, vgg19.VGG19])
module = vgg16
last_dim = 512
_test_application_basic(app, module=module)
_test_application_notop(app, last_dim)
_test_application_variable_input_channels(app, last_dim)
_test_app_pooling(app, last_dim)
def test_xception():
app = xception.Xception
module = xception
last_dim = 2048
_test_application_basic(app, module=module)
_test_application_notop(app, last_dim)
_test_application_variable_input_channels(app, last_dim)
_test_app_pooling(app, last_dim)
def test_inceptionv3():
app = inception_v3.InceptionV3
module = inception_v3
last_dim = 2048
_test_application_basic(app, module=module)
_test_application_notop(app, last_dim)
_test_application_variable_input_channels(app, last_dim)
_test_app_pooling(app, last_dim)
def test_inceptionresnetv2():
app = inception_resnet_v2.InceptionResNetV2
module = inception_resnet_v2
last_dim = 1536
_test_application_basic(app, module=module)
_test_application_notop(app, last_dim)
_test_application_variable_input_channels(app, last_dim)
_test_app_pooling(app, last_dim)
def test_mobilenet():
app, module, last_dim = random.choice(MOBILENET_LIST)
_test_application_basic(app, module=module)
_test_application_notop(app, last_dim)
_test_application_variable_input_channels(app, last_dim)
_test_app_pooling(app, last_dim)
def test_densenet():
app, last_dim = random.choice(DENSENET_LIST)
module = densenet
_test_application_basic(app, module=module)
_test_application_notop(app, last_dim)
_test_application_variable_input_channels(app, last_dim)
_test_app_pooling(app, last_dim)
def test_nasnet():
app, last_dim = NASNET_LIST[0] # NASNetLarge is too heavy to test on Travis
module = nasnet
_test_application_basic(app, module=module)
# _test_application_notop(app, last_dim)
# _test_application_variable_input_channels(app, last_dim)
_test_app_pooling(app, last_dim)
if __name__ == '__main__':
pytest.main([__file__])
|