1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
|
import pytest
import numpy as np
from numpy.testing import assert_allclose
# We don't use keras.applications.imagenet_utils here
# because we also test _obtain_input_shape which is not exposed.
from keras_applications import imagenet_utils as utils
from keras import backend
from keras import models
from keras import layers
from keras import utils as keras_utils
def decode_predictions(*args, **kwargs):
kwargs['backend'] = backend
kwargs['utils'] = keras_utils
return utils.decode_predictions(*args, **kwargs)
def preprocess_input(*args, **kwargs):
kwargs['backend'] = backend
return utils.preprocess_input(*args, **kwargs)
def test_preprocess_input():
# Test image batch with float and int image input
x = np.random.uniform(0, 255, (2, 10, 10, 3))
xint = x.astype('int32')
assert preprocess_input(x).shape == x.shape
assert preprocess_input(xint).shape == xint.shape
out1 = preprocess_input(x, 'channels_last')
out1int = preprocess_input(xint, 'channels_last')
out2 = preprocess_input(np.transpose(x, (0, 3, 1, 2)), 'channels_first')
out2int = preprocess_input(np.transpose(xint, (0, 3, 1, 2)), 'channels_first')
assert_allclose(out1, out2.transpose(0, 2, 3, 1))
assert_allclose(out1int, out2int.transpose(0, 2, 3, 1))
# Test single image
x = np.random.uniform(0, 255, (10, 10, 3))
xint = x.astype('int32')
assert preprocess_input(x).shape == x.shape
assert preprocess_input(xint).shape == xint.shape
out1 = preprocess_input(x, 'channels_last')
out1int = preprocess_input(xint, 'channels_last')
out2 = preprocess_input(np.transpose(x, (2, 0, 1)), 'channels_first')
out2int = preprocess_input(np.transpose(xint, (2, 0, 1)), 'channels_first')
assert_allclose(out1, out2.transpose(1, 2, 0))
assert_allclose(out1int, out2int.transpose(1, 2, 0))
# Test that writing over the input data works predictably
for mode in ['torch', 'tf']:
x = np.random.uniform(0, 255, (2, 10, 10, 3))
xint = x.astype('int')
x2 = preprocess_input(x, mode=mode)
xint2 = preprocess_input(xint)
assert_allclose(x, x2)
assert xint.astype('float').max() != xint2.max()
# Caffe mode works differently from the others
x = np.random.uniform(0, 255, (2, 10, 10, 3))
xint = x.astype('int')
x2 = preprocess_input(x, data_format='channels_last', mode='caffe')
xint2 = preprocess_input(xint)
assert_allclose(x, x2[..., ::-1])
assert xint.astype('float').max() != xint2.max()
def test_preprocess_input_symbolic():
# Test image batch
x = np.random.uniform(0, 255, (2, 10, 10, 3))
inputs = layers.Input(shape=x.shape[1:])
outputs = layers.Lambda(preprocess_input, output_shape=x.shape[1:])(inputs)
model = models.Model(inputs, outputs)
assert model.predict(x).shape == x.shape
outputs1 = layers.Lambda(
lambda x: preprocess_input(x, 'channels_last'),
output_shape=x.shape[1:])(inputs)
model1 = models.Model(inputs, outputs1)
out1 = model1.predict(x)
x2 = np.transpose(x, (0, 3, 1, 2))
inputs2 = layers.Input(shape=x2.shape[1:])
outputs2 = layers.Lambda(
lambda x: preprocess_input(x, 'channels_first'),
output_shape=x2.shape[1:])(inputs2)
model2 = models.Model(inputs2, outputs2)
out2 = model2.predict(x2)
assert_allclose(out1, out2.transpose(0, 2, 3, 1))
# Test single image
x = np.random.uniform(0, 255, (10, 10, 3))
inputs = layers.Input(shape=x.shape)
outputs = layers.Lambda(preprocess_input, output_shape=x.shape)(inputs)
model = models.Model(inputs, outputs)
assert model.predict(x[np.newaxis])[0].shape == x.shape
outputs1 = layers.Lambda(
lambda x: preprocess_input(x, 'channels_last'),
output_shape=x.shape)(inputs)
model1 = models.Model(inputs, outputs1)
out1 = model1.predict(x[np.newaxis])[0]
x2 = np.transpose(x, (2, 0, 1))
inputs2 = layers.Input(shape=x2.shape)
outputs2 = layers.Lambda(
lambda x: preprocess_input(x, 'channels_first'),
output_shape=x2.shape)(inputs2)
model2 = models.Model(inputs2, outputs2)
out2 = model2.predict(x2[np.newaxis])[0]
assert_allclose(out1, out2.transpose(1, 2, 0))
def test_decode_predictions():
x = np.zeros((2, 1000))
x[0, 372] = 1.0
x[1, 549] = 1.0
outs = decode_predictions(x, top=1)
scores = [out[0][2] for out in outs]
assert scores[0] == scores[1]
# the numbers of columns and ImageNet classes are not identical.
with pytest.raises(ValueError):
decode_predictions(np.ones((2, 100)))
def test_obtain_input_shape():
# input_shape and default_size are not identical.
with pytest.raises(ValueError):
utils._obtain_input_shape(
input_shape=(224, 224, 3),
default_size=299,
min_size=139,
data_format='channels_last',
require_flatten=True,
weights='imagenet')
# Test invalid use cases
for data_format in ['channels_last', 'channels_first']:
# test warning
shape = (139, 139)
if data_format == 'channels_last':
input_shape = shape + (99,)
else:
input_shape = (99,) + shape
with pytest.warns(UserWarning):
utils._obtain_input_shape(
input_shape=input_shape,
default_size=None,
min_size=139,
data_format=data_format,
require_flatten=False,
weights='fake_weights')
# input_shape is smaller than min_size.
shape = (100, 100)
if data_format == 'channels_last':
input_shape = shape + (3,)
else:
input_shape = (3,) + shape
with pytest.raises(ValueError):
utils._obtain_input_shape(
input_shape=input_shape,
default_size=None,
min_size=139,
data_format=data_format,
require_flatten=False)
# shape is 1D.
shape = (100,)
if data_format == 'channels_last':
input_shape = shape + (3,)
else:
input_shape = (3,) + shape
with pytest.raises(ValueError):
utils._obtain_input_shape(
input_shape=input_shape,
default_size=None,
min_size=139,
data_format=data_format,
require_flatten=False)
# the number of channels is 5 not 3.
shape = (100, 100)
if data_format == 'channels_last':
input_shape = shape + (5,)
else:
input_shape = (5,) + shape
with pytest.raises(ValueError):
utils._obtain_input_shape(
input_shape=input_shape,
default_size=None,
min_size=139,
data_format=data_format,
require_flatten=False)
# require_flatten=True with dynamic input shape.
with pytest.raises(ValueError):
utils._obtain_input_shape(
input_shape=None,
default_size=None,
min_size=139,
data_format='channels_first',
require_flatten=True)
# test include top
assert utils._obtain_input_shape(
input_shape=(3, 200, 200),
default_size=None,
min_size=139,
data_format='channels_first',
require_flatten=True) == (3, 200, 200)
assert utils._obtain_input_shape(
input_shape=None,
default_size=None,
min_size=139,
data_format='channels_last',
require_flatten=False) == (None, None, 3)
assert utils._obtain_input_shape(
input_shape=None,
default_size=None,
min_size=139,
data_format='channels_first',
require_flatten=False) == (3, None, None)
assert utils._obtain_input_shape(
input_shape=None,
default_size=None,
min_size=139,
data_format='channels_last',
require_flatten=False) == (None, None, 3)
assert utils._obtain_input_shape(
input_shape=(150, 150, 3),
default_size=None,
min_size=139,
data_format='channels_last',
require_flatten=False) == (150, 150, 3)
assert utils._obtain_input_shape(
input_shape=(3, None, None),
default_size=None,
min_size=139,
data_format='channels_first',
require_flatten=False) == (3, None, None)
if __name__ == '__main__':
pytest.main([__file__])
|