1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
|
import numpy as np
import pytest
from keras_preprocessing.image import utils
def test_validate_filename(tmpdir):
valid_extensions = ('png', 'jpg')
filename = tmpdir.ensure('test.png')
assert utils.validate_filename(str(filename), valid_extensions)
filename = tmpdir.ensure('test.PnG')
assert utils.validate_filename(str(filename), valid_extensions)
filename = tmpdir.ensure('test.some_extension')
assert not utils.validate_filename(str(filename), valid_extensions)
assert not utils.validate_filename('some_test_file.png', valid_extensions)
def test_load_img(tmpdir):
filename_rgb = str(tmpdir / 'rgb_utils.png')
filename_rgba = str(tmpdir / 'rgba_utils.png')
original_rgb_array = np.array(255 * np.random.rand(100, 100, 3),
dtype=np.uint8)
original_rgb = utils.array_to_img(original_rgb_array, scale=False)
original_rgb.save(filename_rgb)
original_rgba_array = np.array(255 * np.random.rand(100, 100, 4),
dtype=np.uint8)
original_rgba = utils.array_to_img(original_rgba_array, scale=False)
original_rgba.save(filename_rgba)
# Test that loaded image is exactly equal to original.
loaded_im = utils.load_img(filename_rgb)
loaded_im_array = utils.img_to_array(loaded_im)
assert loaded_im_array.shape == original_rgb_array.shape
assert np.all(loaded_im_array == original_rgb_array)
loaded_im = utils.load_img(filename_rgba, color_mode='rgba')
loaded_im_array = utils.img_to_array(loaded_im)
assert loaded_im_array.shape == original_rgba_array.shape
assert np.all(loaded_im_array == original_rgba_array)
loaded_im = utils.load_img(filename_rgb, color_mode='grayscale')
loaded_im_array = utils.img_to_array(loaded_im)
assert loaded_im_array.shape == (original_rgb_array.shape[0],
original_rgb_array.shape[1], 1)
# Test that nothing is changed when target size is equal to original.
loaded_im = utils.load_img(filename_rgb, target_size=(100, 100))
loaded_im_array = utils.img_to_array(loaded_im)
assert loaded_im_array.shape == original_rgb_array.shape
assert np.all(loaded_im_array == original_rgb_array)
loaded_im = utils.load_img(filename_rgba, color_mode='rgba',
target_size=(100, 100))
loaded_im_array = utils.img_to_array(loaded_im)
assert loaded_im_array.shape == original_rgba_array.shape
assert np.all(loaded_im_array == original_rgba_array)
loaded_im = utils.load_img(filename_rgb, color_mode='grayscale',
target_size=(100, 100))
loaded_im_array = utils.img_to_array(loaded_im)
assert loaded_im_array.shape == (original_rgba_array.shape[0],
original_rgba_array.shape[1], 1)
# Test down-sampling with bilinear interpolation.
loaded_im = utils.load_img(filename_rgb, target_size=(25, 25))
loaded_im_array = utils.img_to_array(loaded_im)
assert loaded_im_array.shape == (25, 25, 3)
loaded_im = utils.load_img(filename_rgba, color_mode='rgba',
target_size=(25, 25))
loaded_im_array = utils.img_to_array(loaded_im)
assert loaded_im_array.shape == (25, 25, 4)
loaded_im = utils.load_img(filename_rgb, color_mode='grayscale',
target_size=(25, 25))
loaded_im_array = utils.img_to_array(loaded_im)
assert loaded_im_array.shape == (25, 25, 1)
# Test down-sampling with nearest neighbor interpolation.
loaded_im_nearest = utils.load_img(filename_rgb, target_size=(25, 25),
interpolation="nearest")
loaded_im_array_nearest = utils.img_to_array(loaded_im_nearest)
assert loaded_im_array_nearest.shape == (25, 25, 3)
assert np.any(loaded_im_array_nearest != loaded_im_array)
loaded_im_nearest = utils.load_img(filename_rgba, color_mode='rgba',
target_size=(25, 25),
interpolation="nearest")
loaded_im_array_nearest = utils.img_to_array(loaded_im_nearest)
assert loaded_im_array_nearest.shape == (25, 25, 4)
assert np.any(loaded_im_array_nearest != loaded_im_array)
# Check that exception is raised if interpolation not supported.
loaded_im = utils.load_img(filename_rgb, interpolation="unsupported")
with pytest.raises(ValueError):
loaded_im = utils.load_img(filename_rgb, target_size=(25, 25),
interpolation="unsupported")
def test_list_pictures(tmpdir):
filenames = ['test.png', 'test0.jpg', 'test-1.jpeg', '2test.bmp',
'2-test.ppm', '3.png', '1.jpeg', 'test.bmp', 'test0.ppm',
'test4.tiff', '5-test.tif', 'test.txt', 'foo.csv',
'face.gif', 'bar.txt']
subdirs = ['', 'subdir1', 'subdir2']
filenames = [tmpdir.ensure(subdir, f) for subdir in subdirs
for f in filenames]
found_images = utils.list_pictures(str(tmpdir))
assert len(found_images) == 33
found_images = utils.list_pictures(str(tmpdir), ext='png')
assert len(found_images) == 6
def test_array_to_img_and_img_to_array():
height, width = 10, 8
# Test the data format
# Test RGB 3D
x = np.random.random((3, height, width))
img = utils.array_to_img(x, data_format='channels_first')
assert img.size == (width, height)
x = utils.img_to_array(img, data_format='channels_first')
assert x.shape == (3, height, width)
# Test RGBA 3D
x = np.random.random((4, height, width))
img = utils.array_to_img(x, data_format='channels_first')
assert img.size == (width, height)
x = utils.img_to_array(img, data_format='channels_first')
assert x.shape == (4, height, width)
# Test 2D
x = np.random.random((1, height, width))
img = utils.array_to_img(x, data_format='channels_first')
assert img.size == (width, height)
x = utils.img_to_array(img, data_format='channels_first')
assert x.shape == (1, height, width)
# Test tf data format
# Test RGB 3D
x = np.random.random((height, width, 3))
img = utils.array_to_img(x, data_format='channels_last')
assert img.size == (width, height)
x = utils.img_to_array(img, data_format='channels_last')
assert x.shape == (height, width, 3)
# Test RGBA 3D
x = np.random.random((height, width, 4))
img = utils.array_to_img(x, data_format='channels_last')
assert img.size == (width, height)
x = utils.img_to_array(img, data_format='channels_last')
assert x.shape == (height, width, 4)
# Test 2D
x = np.random.random((height, width, 1))
img = utils.array_to_img(x, data_format='channels_last')
assert img.size == (width, height)
x = utils.img_to_array(img, data_format='channels_last')
assert x.shape == (height, width, 1)
# Test invalid use case
with pytest.raises(ValueError):
x = np.random.random((height, width)) # not 3D
img = utils.array_to_img(x, data_format='channels_first')
with pytest.raises(ValueError):
x = np.random.random((height, width, 3))
# unknown data_format
img = utils.array_to_img(x, data_format='channels')
with pytest.raises(ValueError):
# neither RGB, RGBA, or gray-scale
x = np.random.random((height, width, 5))
img = utils.array_to_img(x, data_format='channels_last')
with pytest.raises(ValueError):
x = np.random.random((height, width, 3))
# unknown data_format
img = utils.img_to_array(x, data_format='channels')
with pytest.raises(ValueError):
# neither RGB, RGBA, or gray-scale
x = np.random.random((height, width, 5, 3))
img = utils.img_to_array(x, data_format='channels_last')
if __name__ == '__main__':
pytest.main([__file__])
|