1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
|
"""Utilities for performing affine transformations on image data.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from .utils import (array_to_img,
img_to_array)
try:
import scipy
# scipy.ndimage cannot be accessed until explicitly imported
from scipy import ndimage
except ImportError:
scipy = None
try:
from PIL import ImageEnhance
from PIL import Image as pil_image
except ImportError:
pil_image = None
ImageEnhance = None
def flip_axis(x, axis):
x = np.asarray(x).swapaxes(axis, 0)
x = x[::-1, ...]
x = x.swapaxes(0, axis)
return x
def random_rotation(x, rg, row_axis=1, col_axis=2, channel_axis=0,
fill_mode='nearest', cval=0., interpolation_order=1):
"""Performs a random rotation of a Numpy image tensor.
# Arguments
x: Input tensor. Must be 3D.
rg: Rotation range, in degrees.
row_axis: Index of axis for rows in the input tensor.
col_axis: Index of axis for columns in the input tensor.
channel_axis: Index of axis for channels in the input tensor.
fill_mode: Points outside the boundaries of the input
are filled according to the given mode
(one of `{'constant', 'nearest', 'reflect', 'wrap'}`).
cval: Value used for points outside the boundaries
of the input if `mode='constant'`.
interpolation_order: int, order of spline interpolation.
see `ndimage.interpolation.affine_transform`
# Returns
Rotated Numpy image tensor.
"""
theta = np.random.uniform(-rg, rg)
x = apply_affine_transform(x, theta=theta, channel_axis=channel_axis,
fill_mode=fill_mode, cval=cval,
order=interpolation_order)
return x
def random_shift(x, wrg, hrg, row_axis=1, col_axis=2, channel_axis=0,
fill_mode='nearest', cval=0., interpolation_order=1):
"""Performs a random spatial shift of a Numpy image tensor.
# Arguments
x: Input tensor. Must be 3D.
wrg: Width shift range, as a float fraction of the width.
hrg: Height shift range, as a float fraction of the height.
row_axis: Index of axis for rows in the input tensor.
col_axis: Index of axis for columns in the input tensor.
channel_axis: Index of axis for channels in the input tensor.
fill_mode: Points outside the boundaries of the input
are filled according to the given mode
(one of `{'constant', 'nearest', 'reflect', 'wrap'}`).
cval: Value used for points outside the boundaries
of the input if `mode='constant'`.
interpolation_order: int, order of spline interpolation.
see `ndimage.interpolation.affine_transform`
# Returns
Shifted Numpy image tensor.
"""
h, w = x.shape[row_axis], x.shape[col_axis]
tx = np.random.uniform(-hrg, hrg) * h
ty = np.random.uniform(-wrg, wrg) * w
x = apply_affine_transform(x, tx=tx, ty=ty, channel_axis=channel_axis,
fill_mode=fill_mode, cval=cval,
order=interpolation_order)
return x
def random_shear(x, intensity, row_axis=1, col_axis=2, channel_axis=0,
fill_mode='nearest', cval=0., interpolation_order=1):
"""Performs a random spatial shear of a Numpy image tensor.
# Arguments
x: Input tensor. Must be 3D.
intensity: Transformation intensity in degrees.
row_axis: Index of axis for rows in the input tensor.
col_axis: Index of axis for columns in the input tensor.
channel_axis: Index of axis for channels in the input tensor.
fill_mode: Points outside the boundaries of the input
are filled according to the given mode
(one of `{'constant', 'nearest', 'reflect', 'wrap'}`).
cval: Value used for points outside the boundaries
of the input if `mode='constant'`.
interpolation_order: int, order of spline interpolation.
see `ndimage.interpolation.affine_transform`
# Returns
Sheared Numpy image tensor.
"""
shear = np.random.uniform(-intensity, intensity)
x = apply_affine_transform(x, shear=shear, channel_axis=channel_axis,
fill_mode=fill_mode, cval=cval,
order=interpolation_order)
return x
def random_zoom(x, zoom_range, row_axis=1, col_axis=2, channel_axis=0,
fill_mode='nearest', cval=0., interpolation_order=1):
"""Performs a random spatial zoom of a Numpy image tensor.
# Arguments
x: Input tensor. Must be 3D.
zoom_range: Tuple of floats; zoom range for width and height.
row_axis: Index of axis for rows in the input tensor.
col_axis: Index of axis for columns in the input tensor.
channel_axis: Index of axis for channels in the input tensor.
fill_mode: Points outside the boundaries of the input
are filled according to the given mode
(one of `{'constant', 'nearest', 'reflect', 'wrap'}`).
cval: Value used for points outside the boundaries
of the input if `mode='constant'`.
interpolation_order: int, order of spline interpolation.
see `ndimage.interpolation.affine_transform`
# Returns
Zoomed Numpy image tensor.
# Raises
ValueError: if `zoom_range` isn't a tuple.
"""
if len(zoom_range) != 2:
raise ValueError('`zoom_range` should be a tuple or list of two'
' floats. Received: %s' % (zoom_range,))
if zoom_range[0] == 1 and zoom_range[1] == 1:
zx, zy = 1, 1
else:
zx, zy = np.random.uniform(zoom_range[0], zoom_range[1], 2)
x = apply_affine_transform(x, zx=zx, zy=zy, channel_axis=channel_axis,
fill_mode=fill_mode, cval=cval,
order=interpolation_order)
return x
def apply_channel_shift(x, intensity, channel_axis=0):
"""Performs a channel shift.
# Arguments
x: Input tensor. Must be 3D.
intensity: Transformation intensity.
channel_axis: Index of axis for channels in the input tensor.
# Returns
Numpy image tensor.
"""
x = np.rollaxis(x, channel_axis, 0)
min_x, max_x = np.min(x), np.max(x)
channel_images = [
np.clip(x_channel + intensity,
min_x,
max_x)
for x_channel in x]
x = np.stack(channel_images, axis=0)
x = np.rollaxis(x, 0, channel_axis + 1)
return x
def random_channel_shift(x, intensity_range, channel_axis=0):
"""Performs a random channel shift.
# Arguments
x: Input tensor. Must be 3D.
intensity_range: Transformation intensity.
channel_axis: Index of axis for channels in the input tensor.
# Returns
Numpy image tensor.
"""
intensity = np.random.uniform(-intensity_range, intensity_range)
return apply_channel_shift(x, intensity, channel_axis=channel_axis)
def apply_brightness_shift(x, brightness):
"""Performs a brightness shift.
# Arguments
x: Input tensor. Must be 3D.
brightness: Float. The new brightness value.
channel_axis: Index of axis for channels in the input tensor.
# Returns
Numpy image tensor.
# Raises
ValueError if `brightness_range` isn't a tuple.
"""
if ImageEnhance is None:
raise ImportError('Using brightness shifts requires PIL. '
'Install PIL or Pillow.')
x = array_to_img(x)
x = imgenhancer_Brightness = ImageEnhance.Brightness(x)
x = imgenhancer_Brightness.enhance(brightness)
x = img_to_array(x)
return x
def random_brightness(x, brightness_range):
"""Performs a random brightness shift.
# Arguments
x: Input tensor. Must be 3D.
brightness_range: Tuple of floats; brightness range.
channel_axis: Index of axis for channels in the input tensor.
# Returns
Numpy image tensor.
# Raises
ValueError if `brightness_range` isn't a tuple.
"""
if len(brightness_range) != 2:
raise ValueError(
'`brightness_range should be tuple or list of two floats. '
'Received: %s' % (brightness_range,))
u = np.random.uniform(brightness_range[0], brightness_range[1])
return apply_brightness_shift(x, u)
def transform_matrix_offset_center(matrix, x, y):
o_x = float(x) / 2 + 0.5
o_y = float(y) / 2 + 0.5
offset_matrix = np.array([[1, 0, o_x], [0, 1, o_y], [0, 0, 1]])
reset_matrix = np.array([[1, 0, -o_x], [0, 1, -o_y], [0, 0, 1]])
transform_matrix = np.dot(np.dot(offset_matrix, matrix), reset_matrix)
return transform_matrix
def apply_affine_transform(x, theta=0, tx=0, ty=0, shear=0, zx=1, zy=1,
row_axis=0, col_axis=1, channel_axis=2,
fill_mode='nearest', cval=0., order=1):
"""Applies an affine transformation specified by the parameters given.
# Arguments
x: 2D numpy array, single image.
theta: Rotation angle in degrees.
tx: Width shift.
ty: Heigh shift.
shear: Shear angle in degrees.
zx: Zoom in x direction.
zy: Zoom in y direction
row_axis: Index of axis for rows in the input image.
col_axis: Index of axis for columns in the input image.
channel_axis: Index of axis for channels in the input image.
fill_mode: Points outside the boundaries of the input
are filled according to the given mode
(one of `{'constant', 'nearest', 'reflect', 'wrap'}`).
cval: Value used for points outside the boundaries
of the input if `mode='constant'`.
order: int, order of interpolation
# Returns
The transformed version of the input.
"""
if scipy is None:
raise ImportError('Image transformations require SciPy. '
'Install SciPy.')
transform_matrix = None
if theta != 0:
theta = np.deg2rad(theta)
rotation_matrix = np.array([[np.cos(theta), -np.sin(theta), 0],
[np.sin(theta), np.cos(theta), 0],
[0, 0, 1]])
transform_matrix = rotation_matrix
if tx != 0 or ty != 0:
shift_matrix = np.array([[1, 0, tx],
[0, 1, ty],
[0, 0, 1]])
if transform_matrix is None:
transform_matrix = shift_matrix
else:
transform_matrix = np.dot(transform_matrix, shift_matrix)
if shear != 0:
shear = np.deg2rad(shear)
shear_matrix = np.array([[1, -np.sin(shear), 0],
[0, np.cos(shear), 0],
[0, 0, 1]])
if transform_matrix is None:
transform_matrix = shear_matrix
else:
transform_matrix = np.dot(transform_matrix, shear_matrix)
if zx != 1 or zy != 1:
zoom_matrix = np.array([[zx, 0, 0],
[0, zy, 0],
[0, 0, 1]])
if transform_matrix is None:
transform_matrix = zoom_matrix
else:
transform_matrix = np.dot(transform_matrix, zoom_matrix)
if transform_matrix is not None:
h, w = x.shape[row_axis], x.shape[col_axis]
transform_matrix = transform_matrix_offset_center(
transform_matrix, h, w)
x = np.rollaxis(x, channel_axis, 0)
final_affine_matrix = transform_matrix[:2, :2]
final_offset = transform_matrix[:2, 2]
channel_images = [ndimage.interpolation.affine_transform(
x_channel,
final_affine_matrix,
final_offset,
order=order,
mode=fill_mode,
cval=cval) for x_channel in x]
x = np.stack(channel_images, axis=0)
x = np.rollaxis(x, 0, channel_axis + 1)
return x
|