File: affine_transformations.py

package info (click to toggle)
keras-preprocessing 1.1.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 400 kB
  • sloc: python: 4,161; makefile: 11; sh: 10
file content (336 lines) | stat: -rw-r--r-- 12,248 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
"""Utilities for performing affine transformations on image data.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np

from .utils import (array_to_img,
                    img_to_array)

try:
    import scipy
    # scipy.ndimage cannot be accessed until explicitly imported
    from scipy import ndimage
except ImportError:
    scipy = None

try:
    from PIL import ImageEnhance
    from PIL import Image as pil_image
except ImportError:
    pil_image = None
    ImageEnhance = None


def flip_axis(x, axis):
    x = np.asarray(x).swapaxes(axis, 0)
    x = x[::-1, ...]
    x = x.swapaxes(0, axis)
    return x


def random_rotation(x, rg, row_axis=1, col_axis=2, channel_axis=0,
                    fill_mode='nearest', cval=0., interpolation_order=1):
    """Performs a random rotation of a Numpy image tensor.

    # Arguments
        x: Input tensor. Must be 3D.
        rg: Rotation range, in degrees.
        row_axis: Index of axis for rows in the input tensor.
        col_axis: Index of axis for columns in the input tensor.
        channel_axis: Index of axis for channels in the input tensor.
        fill_mode: Points outside the boundaries of the input
            are filled according to the given mode
            (one of `{'constant', 'nearest', 'reflect', 'wrap'}`).
        cval: Value used for points outside the boundaries
            of the input if `mode='constant'`.
        interpolation_order: int, order of spline interpolation.
            see `ndimage.interpolation.affine_transform`

    # Returns
        Rotated Numpy image tensor.
    """
    theta = np.random.uniform(-rg, rg)
    x = apply_affine_transform(x, theta=theta, channel_axis=channel_axis,
                               fill_mode=fill_mode, cval=cval,
                               order=interpolation_order)
    return x


def random_shift(x, wrg, hrg, row_axis=1, col_axis=2, channel_axis=0,
                 fill_mode='nearest', cval=0., interpolation_order=1):
    """Performs a random spatial shift of a Numpy image tensor.

    # Arguments
        x: Input tensor. Must be 3D.
        wrg: Width shift range, as a float fraction of the width.
        hrg: Height shift range, as a float fraction of the height.
        row_axis: Index of axis for rows in the input tensor.
        col_axis: Index of axis for columns in the input tensor.
        channel_axis: Index of axis for channels in the input tensor.
        fill_mode: Points outside the boundaries of the input
            are filled according to the given mode
            (one of `{'constant', 'nearest', 'reflect', 'wrap'}`).
        cval: Value used for points outside the boundaries
            of the input if `mode='constant'`.
        interpolation_order: int, order of spline interpolation.
            see `ndimage.interpolation.affine_transform`

    # Returns
        Shifted Numpy image tensor.
    """
    h, w = x.shape[row_axis], x.shape[col_axis]
    tx = np.random.uniform(-hrg, hrg) * h
    ty = np.random.uniform(-wrg, wrg) * w
    x = apply_affine_transform(x, tx=tx, ty=ty, channel_axis=channel_axis,
                               fill_mode=fill_mode, cval=cval,
                               order=interpolation_order)
    return x


def random_shear(x, intensity, row_axis=1, col_axis=2, channel_axis=0,
                 fill_mode='nearest', cval=0., interpolation_order=1):
    """Performs a random spatial shear of a Numpy image tensor.

    # Arguments
        x: Input tensor. Must be 3D.
        intensity: Transformation intensity in degrees.
        row_axis: Index of axis for rows in the input tensor.
        col_axis: Index of axis for columns in the input tensor.
        channel_axis: Index of axis for channels in the input tensor.
        fill_mode: Points outside the boundaries of the input
            are filled according to the given mode
            (one of `{'constant', 'nearest', 'reflect', 'wrap'}`).
        cval: Value used for points outside the boundaries
            of the input if `mode='constant'`.
        interpolation_order: int, order of spline interpolation.
            see `ndimage.interpolation.affine_transform`

    # Returns
        Sheared Numpy image tensor.
    """
    shear = np.random.uniform(-intensity, intensity)
    x = apply_affine_transform(x, shear=shear, channel_axis=channel_axis,
                               fill_mode=fill_mode, cval=cval,
                               order=interpolation_order)
    return x


def random_zoom(x, zoom_range, row_axis=1, col_axis=2, channel_axis=0,
                fill_mode='nearest', cval=0., interpolation_order=1):
    """Performs a random spatial zoom of a Numpy image tensor.

    # Arguments
        x: Input tensor. Must be 3D.
        zoom_range: Tuple of floats; zoom range for width and height.
        row_axis: Index of axis for rows in the input tensor.
        col_axis: Index of axis for columns in the input tensor.
        channel_axis: Index of axis for channels in the input tensor.
        fill_mode: Points outside the boundaries of the input
            are filled according to the given mode
            (one of `{'constant', 'nearest', 'reflect', 'wrap'}`).
        cval: Value used for points outside the boundaries
            of the input if `mode='constant'`.
        interpolation_order: int, order of spline interpolation.
            see `ndimage.interpolation.affine_transform`

    # Returns
        Zoomed Numpy image tensor.

    # Raises
        ValueError: if `zoom_range` isn't a tuple.
    """
    if len(zoom_range) != 2:
        raise ValueError('`zoom_range` should be a tuple or list of two'
                         ' floats. Received: %s' % (zoom_range,))

    if zoom_range[0] == 1 and zoom_range[1] == 1:
        zx, zy = 1, 1
    else:
        zx, zy = np.random.uniform(zoom_range[0], zoom_range[1], 2)
    x = apply_affine_transform(x, zx=zx, zy=zy, channel_axis=channel_axis,
                               fill_mode=fill_mode, cval=cval,
                               order=interpolation_order)
    return x


def apply_channel_shift(x, intensity, channel_axis=0):
    """Performs a channel shift.

    # Arguments
        x: Input tensor. Must be 3D.
        intensity: Transformation intensity.
        channel_axis: Index of axis for channels in the input tensor.

    # Returns
        Numpy image tensor.

    """
    x = np.rollaxis(x, channel_axis, 0)
    min_x, max_x = np.min(x), np.max(x)
    channel_images = [
        np.clip(x_channel + intensity,
                min_x,
                max_x)
        for x_channel in x]
    x = np.stack(channel_images, axis=0)
    x = np.rollaxis(x, 0, channel_axis + 1)
    return x


def random_channel_shift(x, intensity_range, channel_axis=0):
    """Performs a random channel shift.

    # Arguments
        x: Input tensor. Must be 3D.
        intensity_range: Transformation intensity.
        channel_axis: Index of axis for channels in the input tensor.

    # Returns
        Numpy image tensor.
    """
    intensity = np.random.uniform(-intensity_range, intensity_range)
    return apply_channel_shift(x, intensity, channel_axis=channel_axis)


def apply_brightness_shift(x, brightness):
    """Performs a brightness shift.

    # Arguments
        x: Input tensor. Must be 3D.
        brightness: Float. The new brightness value.
        channel_axis: Index of axis for channels in the input tensor.

    # Returns
        Numpy image tensor.

    # Raises
        ValueError if `brightness_range` isn't a tuple.
    """
    if ImageEnhance is None:
        raise ImportError('Using brightness shifts requires PIL. '
                          'Install PIL or Pillow.')
    x = array_to_img(x)
    x = imgenhancer_Brightness = ImageEnhance.Brightness(x)
    x = imgenhancer_Brightness.enhance(brightness)
    x = img_to_array(x)
    return x


def random_brightness(x, brightness_range):
    """Performs a random brightness shift.

    # Arguments
        x: Input tensor. Must be 3D.
        brightness_range: Tuple of floats; brightness range.
        channel_axis: Index of axis for channels in the input tensor.

    # Returns
        Numpy image tensor.

    # Raises
        ValueError if `brightness_range` isn't a tuple.
    """
    if len(brightness_range) != 2:
        raise ValueError(
            '`brightness_range should be tuple or list of two floats. '
            'Received: %s' % (brightness_range,))

    u = np.random.uniform(brightness_range[0], brightness_range[1])
    return apply_brightness_shift(x, u)


def transform_matrix_offset_center(matrix, x, y):
    o_x = float(x) / 2 + 0.5
    o_y = float(y) / 2 + 0.5
    offset_matrix = np.array([[1, 0, o_x], [0, 1, o_y], [0, 0, 1]])
    reset_matrix = np.array([[1, 0, -o_x], [0, 1, -o_y], [0, 0, 1]])
    transform_matrix = np.dot(np.dot(offset_matrix, matrix), reset_matrix)
    return transform_matrix


def apply_affine_transform(x, theta=0, tx=0, ty=0, shear=0, zx=1, zy=1,
                           row_axis=0, col_axis=1, channel_axis=2,
                           fill_mode='nearest', cval=0., order=1):
    """Applies an affine transformation specified by the parameters given.

    # Arguments
        x: 2D numpy array, single image.
        theta: Rotation angle in degrees.
        tx: Width shift.
        ty: Heigh shift.
        shear: Shear angle in degrees.
        zx: Zoom in x direction.
        zy: Zoom in y direction
        row_axis: Index of axis for rows in the input image.
        col_axis: Index of axis for columns in the input image.
        channel_axis: Index of axis for channels in the input image.
        fill_mode: Points outside the boundaries of the input
            are filled according to the given mode
            (one of `{'constant', 'nearest', 'reflect', 'wrap'}`).
        cval: Value used for points outside the boundaries
            of the input if `mode='constant'`.
        order: int, order of interpolation

    # Returns
        The transformed version of the input.
    """
    if scipy is None:
        raise ImportError('Image transformations require SciPy. '
                          'Install SciPy.')
    transform_matrix = None
    if theta != 0:
        theta = np.deg2rad(theta)
        rotation_matrix = np.array([[np.cos(theta), -np.sin(theta), 0],
                                    [np.sin(theta), np.cos(theta), 0],
                                    [0, 0, 1]])
        transform_matrix = rotation_matrix

    if tx != 0 or ty != 0:
        shift_matrix = np.array([[1, 0, tx],
                                 [0, 1, ty],
                                 [0, 0, 1]])
        if transform_matrix is None:
            transform_matrix = shift_matrix
        else:
            transform_matrix = np.dot(transform_matrix, shift_matrix)

    if shear != 0:
        shear = np.deg2rad(shear)
        shear_matrix = np.array([[1, -np.sin(shear), 0],
                                 [0, np.cos(shear), 0],
                                 [0, 0, 1]])
        if transform_matrix is None:
            transform_matrix = shear_matrix
        else:
            transform_matrix = np.dot(transform_matrix, shear_matrix)

    if zx != 1 or zy != 1:
        zoom_matrix = np.array([[zx, 0, 0],
                                [0, zy, 0],
                                [0, 0, 1]])
        if transform_matrix is None:
            transform_matrix = zoom_matrix
        else:
            transform_matrix = np.dot(transform_matrix, zoom_matrix)

    if transform_matrix is not None:
        h, w = x.shape[row_axis], x.shape[col_axis]
        transform_matrix = transform_matrix_offset_center(
            transform_matrix, h, w)
        x = np.rollaxis(x, channel_axis, 0)
        final_affine_matrix = transform_matrix[:2, :2]
        final_offset = transform_matrix[:2, 2]

        channel_images = [ndimage.interpolation.affine_transform(
            x_channel,
            final_affine_matrix,
            final_offset,
            order=order,
            mode=fill_mode,
            cval=cval) for x_channel in x]
        x = np.stack(channel_images, axis=0)
        x = np.rollaxis(x, 0, channel_axis + 1)
    return x