File: sequence.py

package info (click to toggle)
keras-preprocessing 1.1.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 400 kB
  • sloc: python: 4,161; makefile: 11; sh: 10
file content (454 lines) | stat: -rw-r--r-- 16,775 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
# -*- coding: utf-8 -*-
"""Utilities for preprocessing sequence data.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import random
import json
from six.moves import range
import six


def pad_sequences(sequences, maxlen=None, dtype='int32',
                  padding='pre', truncating='pre', value=0.):
    """Pads sequences to the same length.

    This function transforms a list of
    `num_samples` sequences (lists of integers)
    into a 2D Numpy array of shape `(num_samples, num_timesteps)`.
    `num_timesteps` is either the `maxlen` argument if provided,
    or the length of the longest sequence otherwise.

    Sequences that are shorter than `num_timesteps`
    are padded with `value` at the beginning or the end
    if padding='post.

    Sequences longer than `num_timesteps` are truncated
    so that they fit the desired length.
    The position where padding or truncation happens is determined by
    the arguments `padding` and `truncating`, respectively.

    Pre-padding is the default.

    # Arguments
        sequences: List of lists, where each element is a sequence.
        maxlen: Int, maximum length of all sequences.
        dtype: Type of the output sequences.
            To pad sequences with variable length strings, you can use `object`.
        padding: String, 'pre' or 'post':
            pad either before or after each sequence.
        truncating: String, 'pre' or 'post':
            remove values from sequences larger than
            `maxlen`, either at the beginning or at the end of the sequences.
        value: Float or String, padding value.

    # Returns
        x: Numpy array with shape `(len(sequences), maxlen)`

    # Raises
        ValueError: In case of invalid values for `truncating` or `padding`,
            or in case of invalid shape for a `sequences` entry.
    """
    if not hasattr(sequences, '__len__'):
        raise ValueError('`sequences` must be iterable.')
    num_samples = len(sequences)

    lengths = []
    sample_shape = ()
    flag = True

    # take the sample shape from the first non empty sequence
    # checking for consistency in the main loop below.

    for x in sequences:
        try:
            lengths.append(len(x))
            if flag and len(x):
                sample_shape = np.asarray(x).shape[1:]
                flag = False
        except TypeError:
            raise ValueError('`sequences` must be a list of iterables. '
                             'Found non-iterable: ' + str(x))

    if maxlen is None:
        maxlen = np.max(lengths)

    is_dtype_str = np.issubdtype(dtype, np.str_) or np.issubdtype(dtype, np.unicode_)
    if isinstance(value, six.string_types) and dtype != object and not is_dtype_str:
        raise ValueError("`dtype` {} is not compatible with `value`'s type: {}\n"
                         "You should set `dtype=object` for variable length strings."
                         .format(dtype, type(value)))

    x = np.full((num_samples, maxlen) + sample_shape, value, dtype=dtype)
    for idx, s in enumerate(sequences):
        if not len(s):
            continue  # empty list/array was found
        if truncating == 'pre':
            trunc = s[-maxlen:]
        elif truncating == 'post':
            trunc = s[:maxlen]
        else:
            raise ValueError('Truncating type "%s" '
                             'not understood' % truncating)

        # check `trunc` has expected shape
        trunc = np.asarray(trunc, dtype=dtype)
        if trunc.shape[1:] != sample_shape:
            raise ValueError('Shape of sample %s of sequence at position %s '
                             'is different from expected shape %s' %
                             (trunc.shape[1:], idx, sample_shape))

        if padding == 'post':
            x[idx, :len(trunc)] = trunc
        elif padding == 'pre':
            x[idx, -len(trunc):] = trunc
        else:
            raise ValueError('Padding type "%s" not understood' % padding)
    return x


def make_sampling_table(size, sampling_factor=1e-5):
    """Generates a word rank-based probabilistic sampling table.

    Used for generating the `sampling_table` argument for `skipgrams`.
    `sampling_table[i]` is the probability of sampling
    the word i-th most common word in a dataset
    (more common words should be sampled less frequently, for balance).

    The sampling probabilities are generated according
    to the sampling distribution used in word2vec:

    ```
    p(word) = (min(1, sqrt(word_frequency / sampling_factor) /
        (word_frequency / sampling_factor)))
    ```

    We assume that the word frequencies follow Zipf's law (s=1) to derive
    a numerical approximation of frequency(rank):

    `frequency(rank) ~ 1/(rank * (log(rank) + gamma) + 1/2 - 1/(12*rank))`
    where `gamma` is the Euler-Mascheroni constant.

    # Arguments
        size: Int, number of possible words to sample.
        sampling_factor: The sampling factor in the word2vec formula.

    # Returns
        A 1D Numpy array of length `size` where the ith entry
        is the probability that a word of rank i should be sampled.
    """
    gamma = 0.577
    rank = np.arange(size)
    rank[0] = 1
    inv_fq = rank * (np.log(rank) + gamma) + 0.5 - 1. / (12. * rank)
    f = sampling_factor * inv_fq

    return np.minimum(1., f / np.sqrt(f))


def skipgrams(sequence, vocabulary_size,
              window_size=4, negative_samples=1., shuffle=True,
              categorical=False, sampling_table=None, seed=None):
    """Generates skipgram word pairs.

    This function transforms a sequence of word indexes (list of integers)
    into tuples of words of the form:

    - (word, word in the same window), with label 1 (positive samples).
    - (word, random word from the vocabulary), with label 0 (negative samples).

    Read more about Skipgram in this gnomic paper by Mikolov et al.:
    [Efficient Estimation of Word Representations in
    Vector Space](http://arxiv.org/pdf/1301.3781v3.pdf)

    # Arguments
        sequence: A word sequence (sentence), encoded as a list
            of word indices (integers). If using a `sampling_table`,
            word indices are expected to match the rank
            of the words in a reference dataset (e.g. 10 would encode
            the 10-th most frequently occurring token).
            Note that index 0 is expected to be a non-word and will be skipped.
        vocabulary_size: Int, maximum possible word index + 1
        window_size: Int, size of sampling windows (technically half-window).
            The window of a word `w_i` will be
            `[i - window_size, i + window_size+1]`.
        negative_samples: Float >= 0. 0 for no negative (i.e. random) samples.
            1 for same number as positive samples.
        shuffle: Whether to shuffle the word couples before returning them.
        categorical: bool. if False, labels will be
            integers (eg. `[0, 1, 1 .. ]`),
            if `True`, labels will be categorical, e.g.
            `[[1,0],[0,1],[0,1] .. ]`.
        sampling_table: 1D array of size `vocabulary_size` where the entry i
            encodes the probability to sample a word of rank i.
        seed: Random seed.

    # Returns
        couples, labels: where `couples` are int pairs and
            `labels` are either 0 or 1.

    # Note
        By convention, index 0 in the vocabulary is
        a non-word and will be skipped.
    """
    couples = []
    labels = []
    for i, wi in enumerate(sequence):
        if not wi:
            continue
        if sampling_table is not None:
            if sampling_table[wi] < random.random():
                continue

        window_start = max(0, i - window_size)
        window_end = min(len(sequence), i + window_size + 1)
        for j in range(window_start, window_end):
            if j != i:
                wj = sequence[j]
                if not wj:
                    continue
                couples.append([wi, wj])
                if categorical:
                    labels.append([0, 1])
                else:
                    labels.append(1)

    if negative_samples > 0:
        num_negative_samples = int(len(labels) * negative_samples)
        words = [c[0] for c in couples]
        random.shuffle(words)

        couples += [[words[i % len(words)],
                     random.randint(1, vocabulary_size - 1)]
                    for i in range(num_negative_samples)]
        if categorical:
            labels += [[1, 0]] * num_negative_samples
        else:
            labels += [0] * num_negative_samples

    if shuffle:
        if seed is None:
            seed = random.randint(0, 10e6)
        random.seed(seed)
        random.shuffle(couples)
        random.seed(seed)
        random.shuffle(labels)

    return couples, labels


def _remove_long_seq(maxlen, seq, label):
    """Removes sequences that exceed the maximum length.

    # Arguments
        maxlen: Int, maximum length of the output sequences.
        seq: List of lists, where each sublist is a sequence.
        label: List where each element is an integer.

    # Returns
        new_seq, new_label: shortened lists for `seq` and `label`.
    """
    new_seq, new_label = [], []
    for x, y in zip(seq, label):
        if len(x) < maxlen:
            new_seq.append(x)
            new_label.append(y)
    return new_seq, new_label


class TimeseriesGenerator(object):
    """Utility class for generating batches of temporal data.

    This class takes in a sequence of data-points gathered at
    equal intervals, along with time series parameters such as
    stride, length of history, etc., to produce batches for
    training/validation.

    # Arguments
        data: Indexable generator (such as list or Numpy array)
            containing consecutive data points (timesteps).
            The data should be at 2D, and axis 0 is expected
            to be the time dimension.
        targets: Targets corresponding to timesteps in `data`.
            It should have same length as `data`.
        length: Length of the output sequences (in number of timesteps).
        sampling_rate: Period between successive individual timesteps
            within sequences. For rate `r`, timesteps
            `data[i]`, `data[i-r]`, ... `data[i - length]`
            are used for create a sample sequence.
        stride: Period between successive output sequences.
            For stride `s`, consecutive output samples would
            be centered around `data[i]`, `data[i+s]`, `data[i+2*s]`, etc.
        start_index: Data points earlier than `start_index` will not be used
            in the output sequences. This is useful to reserve part of the
            data for test or validation.
        end_index: Data points later than `end_index` will not be used
            in the output sequences. This is useful to reserve part of the
            data for test or validation.
        shuffle: Whether to shuffle output samples,
            or instead draw them in chronological order.
        reverse: Boolean: if `true`, timesteps in each output sample will be
            in reverse chronological order.
        batch_size: Number of timeseries samples in each batch
            (except maybe the last one).

    # Returns
        A [Sequence](/utils/#sequence) instance.

    # Examples

    ```python
    from keras.preprocessing.sequence import TimeseriesGenerator
    import numpy as np

    data = np.array([[i] for i in range(50)])
    targets = np.array([[i] for i in range(50)])

    data_gen = TimeseriesGenerator(data, targets,
                                   length=10, sampling_rate=2,
                                   batch_size=2)
    assert len(data_gen) == 20

    batch_0 = data_gen[0]
    x, y = batch_0
    assert np.array_equal(x,
                          np.array([[[0], [2], [4], [6], [8]],
                                    [[1], [3], [5], [7], [9]]]))
    assert np.array_equal(y,
                          np.array([[10], [11]]))
    ```
    """

    def __init__(self, data, targets, length,
                 sampling_rate=1,
                 stride=1,
                 start_index=0,
                 end_index=None,
                 shuffle=False,
                 reverse=False,
                 batch_size=128):

        if len(data) != len(targets):
            raise ValueError('Data and targets have to be' +
                             ' of same length. '
                             'Data length is {}'.format(len(data)) +
                             ' while target length is {}'.format(len(targets)))

        self.data = data
        self.targets = targets
        self.length = length
        self.sampling_rate = sampling_rate
        self.stride = stride
        self.start_index = start_index + length
        if end_index is None:
            end_index = len(data) - 1
        self.end_index = end_index
        self.shuffle = shuffle
        self.reverse = reverse
        self.batch_size = batch_size

        if self.start_index > self.end_index:
            raise ValueError('`start_index+length=%i > end_index=%i` '
                             'is disallowed, as no part of the sequence '
                             'would be left to be used as current step.'
                             % (self.start_index, self.end_index))

    def __len__(self):
        return (self.end_index - self.start_index +
                self.batch_size * self.stride) // (self.batch_size * self.stride)

    def __getitem__(self, index):
        if self.shuffle:
            rows = np.random.randint(
                self.start_index, self.end_index + 1, size=self.batch_size)
        else:
            i = self.start_index + self.batch_size * self.stride * index
            rows = np.arange(i, min(i + self.batch_size *
                                    self.stride, self.end_index + 1), self.stride)

        samples = np.array([self.data[row - self.length:row:self.sampling_rate]
                            for row in rows])
        targets = np.array([self.targets[row] for row in rows])

        if self.reverse:
            return samples[:, ::-1, ...], targets
        return samples, targets

    def get_config(self):
        '''Returns the TimeseriesGenerator configuration as Python dictionary.

        # Returns
            A Python dictionary with the TimeseriesGenerator configuration.
        '''
        data = self.data
        if type(self.data).__module__ == np.__name__:
            data = self.data.tolist()
        try:
            json_data = json.dumps(data)
        except TypeError:
            raise TypeError('Data not JSON Serializable:', data)

        targets = self.targets
        if type(self.targets).__module__ == np.__name__:
            targets = self.targets.tolist()
        try:
            json_targets = json.dumps(targets)
        except TypeError:
            raise TypeError('Targets not JSON Serializable:', targets)

        return {
            'data': json_data,
            'targets': json_targets,
            'length': self.length,
            'sampling_rate': self.sampling_rate,
            'stride': self.stride,
            'start_index': self.start_index,
            'end_index': self.end_index,
            'shuffle': self.shuffle,
            'reverse': self.reverse,
            'batch_size': self.batch_size
        }

    def to_json(self, **kwargs):
        """Returns a JSON string containing the timeseries generator
        configuration. To load a generator from a JSON string, use
        `keras.preprocessing.sequence.timeseries_generator_from_json(json_string)`.

        # Arguments
            **kwargs: Additional keyword arguments
                to be passed to `json.dumps()`.

        # Returns
            A JSON string containing the tokenizer configuration.
        """
        config = self.get_config()
        timeseries_generator_config = {
            'class_name': self.__class__.__name__,
            'config': config
        }
        return json.dumps(timeseries_generator_config, **kwargs)


def timeseries_generator_from_json(json_string):
    """Parses a JSON timeseries generator configuration file and
    returns a timeseries generator instance.

    # Arguments
        json_string: JSON string encoding a timeseries
            generator configuration.

    # Returns
        A Keras TimeseriesGenerator instance
    """
    full_config = json.loads(json_string)
    config = full_config.get('config')

    data = json.loads(config.pop('data'))
    config['data'] = data
    targets = json.loads(config.pop('targets'))
    config['targets'] = targets

    return TimeseriesGenerator(**config)