1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
|
# -*- coding: utf-8 -*-
"""Utilities for text input preprocessing.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import string
import sys
import warnings
from collections import OrderedDict
from collections import defaultdict
from hashlib import md5
import json
import numpy as np
from six.moves import range
from six.moves import zip
if sys.version_info < (3,):
maketrans = string.maketrans
else:
maketrans = str.maketrans
def text_to_word_sequence(text,
filters='!"#$%&()*+,-./:;<=>?@[\\]^_`{|}~\t\n',
lower=True, split=" "):
"""Converts a text to a sequence of words (or tokens).
# Arguments
text: Input text (string).
filters: list (or concatenation) of characters to filter out, such as
punctuation. Default: ``!"#$%&()*+,-./:;<=>?@[\\]^_`{|}~\\t\\n``,
includes basic punctuation, tabs, and newlines.
lower: boolean. Whether to convert the input to lowercase.
split: str. Separator for word splitting.
# Returns
A list of words (or tokens).
"""
if lower:
text = text.lower()
if sys.version_info < (3,):
if isinstance(text, unicode): # noqa: F821
translate_map = {
ord(c): unicode(split) for c in filters # noqa: F821
}
text = text.translate(translate_map)
elif len(split) == 1:
translate_map = maketrans(filters, split * len(filters))
text = text.translate(translate_map)
else:
for c in filters:
text = text.replace(c, split)
else:
translate_dict = {c: split for c in filters}
translate_map = maketrans(translate_dict)
text = text.translate(translate_map)
seq = text.split(split)
return [i for i in seq if i]
def one_hot(text, n,
filters='!"#$%&()*+,-./:;<=>?@[\\]^_`{|}~\t\n',
lower=True,
split=' '):
"""One-hot encodes a text into a list of word indexes of size n.
This is a wrapper to the `hashing_trick` function using `hash` as the
hashing function; unicity of word to index mapping non-guaranteed.
# Arguments
text: Input text (string).
n: int. Size of vocabulary.
filters: list (or concatenation) of characters to filter out, such as
punctuation. Default: ``!"#$%&()*+,-./:;<=>?@[\\]^_`{|}~\\t\\n``,
includes basic punctuation, tabs, and newlines.
lower: boolean. Whether to set the text to lowercase.
split: str. Separator for word splitting.
# Returns
List of integers in [1, n]. Each integer encodes a word
(unicity non-guaranteed).
"""
return hashing_trick(text, n,
hash_function=hash,
filters=filters,
lower=lower,
split=split)
def hashing_trick(text, n,
hash_function=None,
filters='!"#$%&()*+,-./:;<=>?@[\\]^_`{|}~\t\n',
lower=True,
split=' '):
"""Converts a text to a sequence of indexes in a fixed-size hashing space.
# Arguments
text: Input text (string).
n: Dimension of the hashing space.
hash_function: defaults to python `hash` function, can be 'md5' or
any function that takes in input a string and returns a int.
Note that 'hash' is not a stable hashing function, so
it is not consistent across different runs, while 'md5'
is a stable hashing function.
filters: list (or concatenation) of characters to filter out, such as
punctuation. Default: ``!"#$%&()*+,-./:;<=>?@[\\]^_`{|}~\\t\\n``,
includes basic punctuation, tabs, and newlines.
lower: boolean. Whether to set the text to lowercase.
split: str. Separator for word splitting.
# Returns
A list of integer word indices (unicity non-guaranteed).
`0` is a reserved index that won't be assigned to any word.
Two or more words may be assigned to the same index, due to possible
collisions by the hashing function.
The [probability](
https://en.wikipedia.org/wiki/Birthday_problem#Probability_table)
of a collision is in relation to the dimension of the hashing space and
the number of distinct objects.
"""
if hash_function is None:
hash_function = hash
elif hash_function == 'md5':
def hash_function(w):
return int(md5(w.encode()).hexdigest(), 16)
seq = text_to_word_sequence(text,
filters=filters,
lower=lower,
split=split)
return [(hash_function(w) % (n - 1) + 1) for w in seq]
class Tokenizer(object):
"""Text tokenization utility class.
This class allows to vectorize a text corpus, by turning each
text into either a sequence of integers (each integer being the index
of a token in a dictionary) or into a vector where the coefficient
for each token could be binary, based on word count, based on tf-idf...
# Arguments
num_words: the maximum number of words to keep, based
on word frequency. Only the most common `num_words-1` words will
be kept.
filters: a string where each element is a character that will be
filtered from the texts. The default is all punctuation, plus
tabs and line breaks, minus the `'` character.
lower: boolean. Whether to convert the texts to lowercase.
split: str. Separator for word splitting.
char_level: if True, every character will be treated as a token.
oov_token: if given, it will be added to word_index and used to
replace out-of-vocabulary words during text_to_sequence calls
By default, all punctuation is removed, turning the texts into
space-separated sequences of words
(words maybe include the `'` character). These sequences are then
split into lists of tokens. They will then be indexed or vectorized.
`0` is a reserved index that won't be assigned to any word.
"""
def __init__(self, num_words=None,
filters='!"#$%&()*+,-./:;<=>?@[\\]^_`{|}~\t\n',
lower=True,
split=' ',
char_level=False,
oov_token=None,
document_count=0,
**kwargs):
# Legacy support
if 'nb_words' in kwargs:
warnings.warn('The `nb_words` argument in `Tokenizer` '
'has been renamed `num_words`.')
num_words = kwargs.pop('nb_words')
if kwargs:
raise TypeError('Unrecognized keyword arguments: ' + str(kwargs))
self.word_counts = OrderedDict()
self.word_docs = defaultdict(int)
self.filters = filters
self.split = split
self.lower = lower
self.num_words = num_words
self.document_count = document_count
self.char_level = char_level
self.oov_token = oov_token
self.index_docs = defaultdict(int)
self.word_index = {}
self.index_word = {}
def fit_on_texts(self, texts):
"""Updates internal vocabulary based on a list of texts.
In the case where texts contains lists,
we assume each entry of the lists to be a token.
Required before using `texts_to_sequences` or `texts_to_matrix`.
# Arguments
texts: can be a list of strings,
a generator of strings (for memory-efficiency),
or a list of list of strings.
"""
for text in texts:
self.document_count += 1
if self.char_level or isinstance(text, list):
if self.lower:
if isinstance(text, list):
text = [text_elem.lower() for text_elem in text]
else:
text = text.lower()
seq = text
else:
seq = text_to_word_sequence(text,
self.filters,
self.lower,
self.split)
for w in seq:
if w in self.word_counts:
self.word_counts[w] += 1
else:
self.word_counts[w] = 1
for w in set(seq):
# In how many documents each word occurs
self.word_docs[w] += 1
wcounts = list(self.word_counts.items())
wcounts.sort(key=lambda x: x[1], reverse=True)
# forcing the oov_token to index 1 if it exists
if self.oov_token is None:
sorted_voc = []
else:
sorted_voc = [self.oov_token]
sorted_voc.extend(wc[0] for wc in wcounts)
# note that index 0 is reserved, never assigned to an existing word
self.word_index = dict(
zip(sorted_voc, list(range(1, len(sorted_voc) + 1))))
self.index_word = {c: w for w, c in self.word_index.items()}
for w, c in list(self.word_docs.items()):
self.index_docs[self.word_index[w]] = c
def fit_on_sequences(self, sequences):
"""Updates internal vocabulary based on a list of sequences.
Required before using `sequences_to_matrix`
(if `fit_on_texts` was never called).
# Arguments
sequences: A list of sequence.
A "sequence" is a list of integer word indices.
"""
self.document_count += len(sequences)
for seq in sequences:
seq = set(seq)
for i in seq:
self.index_docs[i] += 1
def texts_to_sequences(self, texts):
"""Transforms each text in texts to a sequence of integers.
Only top `num_words-1` most frequent words will be taken into account.
Only words known by the tokenizer will be taken into account.
# Arguments
texts: A list of texts (strings).
# Returns
A list of sequences.
"""
return list(self.texts_to_sequences_generator(texts))
def texts_to_sequences_generator(self, texts):
"""Transforms each text in `texts` to a sequence of integers.
Each item in texts can also be a list,
in which case we assume each item of that list to be a token.
Only top `num_words-1` most frequent words will be taken into account.
Only words known by the tokenizer will be taken into account.
# Arguments
texts: A list of texts (strings).
# Yields
Yields individual sequences.
"""
num_words = self.num_words
oov_token_index = self.word_index.get(self.oov_token)
for text in texts:
if self.char_level or isinstance(text, list):
if self.lower:
if isinstance(text, list):
text = [text_elem.lower() for text_elem in text]
else:
text = text.lower()
seq = text
else:
seq = text_to_word_sequence(text,
self.filters,
self.lower,
self.split)
vect = []
for w in seq:
i = self.word_index.get(w)
if i is not None:
if num_words and i >= num_words:
if oov_token_index is not None:
vect.append(oov_token_index)
else:
vect.append(i)
elif self.oov_token is not None:
vect.append(oov_token_index)
yield vect
def sequences_to_texts(self, sequences):
"""Transforms each sequence into a list of text.
Only top `num_words-1` most frequent words will be taken into account.
Only words known by the tokenizer will be taken into account.
# Arguments
sequences: A list of sequences (list of integers).
# Returns
A list of texts (strings)
"""
return list(self.sequences_to_texts_generator(sequences))
def sequences_to_texts_generator(self, sequences):
"""Transforms each sequence in `sequences` to a list of texts(strings).
Each sequence has to a list of integers.
In other words, sequences should be a list of sequences
Only top `num_words-1` most frequent words will be taken into account.
Only words known by the tokenizer will be taken into account.
# Arguments
sequences: A list of sequences.
# Yields
Yields individual texts.
"""
num_words = self.num_words
oov_token_index = self.word_index.get(self.oov_token)
for seq in sequences:
vect = []
for num in seq:
word = self.index_word.get(num)
if word is not None:
if num_words and num >= num_words:
if oov_token_index is not None:
vect.append(self.index_word[oov_token_index])
else:
vect.append(word)
elif self.oov_token is not None:
vect.append(self.index_word[oov_token_index])
vect = ' '.join(vect)
yield vect
def texts_to_matrix(self, texts, mode='binary'):
"""Convert a list of texts to a Numpy matrix.
# Arguments
texts: list of strings.
mode: one of "binary", "count", "tfidf", "freq".
# Returns
A Numpy matrix.
"""
sequences = self.texts_to_sequences(texts)
return self.sequences_to_matrix(sequences, mode=mode)
def sequences_to_matrix(self, sequences, mode='binary'):
"""Converts a list of sequences into a Numpy matrix.
# Arguments
sequences: list of sequences
(a sequence is a list of integer word indices).
mode: one of "binary", "count", "tfidf", "freq"
# Returns
A Numpy matrix.
# Raises
ValueError: In case of invalid `mode` argument,
or if the Tokenizer requires to be fit to sample data.
"""
if not self.num_words:
if self.word_index:
num_words = len(self.word_index) + 1
else:
raise ValueError('Specify a dimension (`num_words` argument), '
'or fit on some text data first.')
else:
num_words = self.num_words
if mode == 'tfidf' and not self.document_count:
raise ValueError('Fit the Tokenizer on some data '
'before using tfidf mode.')
x = np.zeros((len(sequences), num_words))
for i, seq in enumerate(sequences):
if not seq:
continue
counts = defaultdict(int)
for j in seq:
if j >= num_words:
continue
counts[j] += 1
for j, c in list(counts.items()):
if mode == 'count':
x[i][j] = c
elif mode == 'freq':
x[i][j] = c / len(seq)
elif mode == 'binary':
x[i][j] = 1
elif mode == 'tfidf':
# Use weighting scheme 2 in
# https://en.wikipedia.org/wiki/Tf%E2%80%93idf
tf = 1 + np.log(c)
idf = np.log(1 + self.document_count /
(1 + self.index_docs.get(j, 0)))
x[i][j] = tf * idf
else:
raise ValueError('Unknown vectorization mode:', mode)
return x
def get_config(self):
'''Returns the tokenizer configuration as Python dictionary.
The word count dictionaries used by the tokenizer get serialized
into plain JSON, so that the configuration can be read by other
projects.
# Returns
A Python dictionary with the tokenizer configuration.
'''
json_word_counts = json.dumps(self.word_counts)
json_word_docs = json.dumps(self.word_docs)
json_index_docs = json.dumps(self.index_docs)
json_word_index = json.dumps(self.word_index)
json_index_word = json.dumps(self.index_word)
return {
'num_words': self.num_words,
'filters': self.filters,
'lower': self.lower,
'split': self.split,
'char_level': self.char_level,
'oov_token': self.oov_token,
'document_count': self.document_count,
'word_counts': json_word_counts,
'word_docs': json_word_docs,
'index_docs': json_index_docs,
'index_word': json_index_word,
'word_index': json_word_index
}
def to_json(self, **kwargs):
"""Returns a JSON string containing the tokenizer configuration.
To load a tokenizer from a JSON string, use
`keras.preprocessing.text.tokenizer_from_json(json_string)`.
# Arguments
**kwargs: Additional keyword arguments
to be passed to `json.dumps()`.
# Returns
A JSON string containing the tokenizer configuration.
"""
config = self.get_config()
tokenizer_config = {
'class_name': self.__class__.__name__,
'config': config
}
return json.dumps(tokenizer_config, **kwargs)
def tokenizer_from_json(json_string):
"""Parses a JSON tokenizer configuration file and returns a
tokenizer instance.
# Arguments
json_string: JSON string encoding a tokenizer configuration.
# Returns
A Keras Tokenizer instance
"""
tokenizer_config = json.loads(json_string)
config = tokenizer_config.get('config')
word_counts = json.loads(config.pop('word_counts'))
word_docs = json.loads(config.pop('word_docs'))
index_docs = json.loads(config.pop('index_docs'))
# Integer indexing gets converted to strings with json.dumps()
index_docs = {int(k): v for k, v in index_docs.items()}
index_word = json.loads(config.pop('index_word'))
index_word = {int(k): v for k, v in index_word.items()}
word_index = json.loads(config.pop('word_index'))
tokenizer = Tokenizer(**config)
tokenizer.word_counts = word_counts
tokenizer.word_docs = word_docs
tokenizer.index_docs = index_docs
tokenizer.word_index = word_index
tokenizer.index_word = index_word
return tokenizer
|