1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
|
import os
import random
import shutil
import numpy as np
import pandas as pd
import pytest
from PIL import Image
from keras_preprocessing.image import dataframe_iterator
from keras_preprocessing.image import image_data_generator
@pytest.fixture(scope='module')
def all_test_images():
img_w = img_h = 20
rgb_images = []
rgba_images = []
gray_images = []
for n in range(8):
bias = np.random.rand(img_w, img_h, 1) * 64
variance = np.random.rand(img_w, img_h, 1) * (255 - 64)
imarray = np.random.rand(img_w, img_h, 3) * variance + bias
im = Image.fromarray(imarray.astype('uint8')).convert('RGB')
rgb_images.append(im)
imarray = np.random.rand(img_w, img_h, 4) * variance + bias
im = Image.fromarray(imarray.astype('uint8')).convert('RGBA')
rgba_images.append(im)
imarray = np.random.rand(img_w, img_h, 1) * variance + bias
im = Image.fromarray(
imarray.astype('uint8').squeeze()).convert('L')
gray_images.append(im)
return [rgb_images, rgba_images, gray_images]
def test_dataframe_iterator(all_test_images, tmpdir):
num_classes = 2
# save the images in the tmpdir
count = 0
filenames = []
filepaths = []
filenames_without = []
for test_images in all_test_images:
for im in test_images:
filename = "image-{}.png".format(count)
filename_without = "image-{}".format(count)
filenames.append(filename)
filepaths.append(os.path.join(str(tmpdir), filename))
filenames_without.append(filename_without)
im.save(str(tmpdir / filename))
count += 1
df = pd.DataFrame({
"filename": filenames,
"class": [str(random.randint(0, 1)) for _ in filenames],
"filepaths": filepaths
})
# create iterator
iterator = dataframe_iterator.DataFrameIterator(df, str(tmpdir))
batch = next(iterator)
assert len(batch) == 2
assert isinstance(batch[0], np.ndarray)
assert isinstance(batch[1], np.ndarray)
generator = image_data_generator.ImageDataGenerator()
df_iterator = generator.flow_from_dataframe(df, x_col='filepaths')
df_iterator_dir = generator.flow_from_dataframe(df, str(tmpdir))
df_sparse_iterator = generator.flow_from_dataframe(df, str(tmpdir),
class_mode="sparse")
assert not np.isnan(df_sparse_iterator.classes).any()
# check number of classes and images
assert len(df_iterator.class_indices) == num_classes
assert len(df_iterator.classes) == count
assert set(df_iterator.filenames) == set(filepaths)
assert len(df_iterator_dir.class_indices) == num_classes
assert len(df_iterator_dir.classes) == count
assert set(df_iterator_dir.filenames) == set(filenames)
# test without shuffle
_, batch_y = next(generator.flow_from_dataframe(df, str(tmpdir),
shuffle=False,
class_mode="sparse"))
assert (batch_y == df['class'].astype('float')[:len(batch_y)]).all()
# Test invalid use cases
with pytest.raises(ValueError):
generator.flow_from_dataframe(df, str(tmpdir), color_mode='cmyk')
with pytest.raises(ValueError):
generator.flow_from_dataframe(df, str(tmpdir), class_mode='output')
with pytest.warns(DeprecationWarning):
generator.flow_from_dataframe(df, str(tmpdir), has_ext=True)
with pytest.warns(DeprecationWarning):
generator.flow_from_dataframe(df, str(tmpdir), has_ext=False)
def preprocessing_function(x):
"""This will fail if not provided by a Numpy array.
Note: This is made to enforce backward compatibility.
"""
assert x.shape == (26, 26, 3)
assert type(x) is np.ndarray
return np.zeros_like(x)
# Test usage as Sequence
generator = image_data_generator.ImageDataGenerator(
preprocessing_function=preprocessing_function)
dir_seq = generator.flow_from_dataframe(df, str(tmpdir),
target_size=(26, 26),
color_mode='rgb',
batch_size=3,
class_mode='categorical')
assert len(dir_seq) == np.ceil(count / 3)
x1, y1 = dir_seq[1]
assert x1.shape == (3, 26, 26, 3)
assert y1.shape == (3, num_classes)
x1, y1 = dir_seq[5]
assert (x1 == 0).all()
with pytest.raises(ValueError):
x1, y1 = dir_seq[9]
def test_dataframe_iterator_validate_filenames(all_test_images, tmpdir):
# save the images in the paths
count = 0
filenames = []
for test_images in all_test_images:
for im in test_images:
filename = 'image-{}.png'.format(count)
im.save(str(tmpdir / filename))
filenames.append(filename)
count += 1
df = pd.DataFrame({"filename": filenames + ['test.jpp', 'test.jpg']})
generator = image_data_generator.ImageDataGenerator()
df_iterator = generator.flow_from_dataframe(df,
str(tmpdir),
class_mode="input")
assert len(df_iterator.filenames) == len(df['filename']) - 2
df_iterator = generator.flow_from_dataframe(df,
str(tmpdir),
class_mode="input",
validate_filenames=False)
assert len(df_iterator.filenames) == len(df['filename'])
def test_dataframe_iterator_sample_weights(all_test_images, tmpdir):
# save the images in the paths
count = 0
filenames = []
for test_images in all_test_images:
for im in test_images:
filename = 'image-{}.png'.format(count)
im.save(str(tmpdir / filename))
filenames.append(filename)
count += 1
df = pd.DataFrame({"filename": filenames})
df['weight'] = ([2, 5] * len(df))[:len(df)]
generator = image_data_generator.ImageDataGenerator()
df_iterator = generator.flow_from_dataframe(df, str(tmpdir),
x_col="filename",
y_col=None,
shuffle=False,
batch_size=5,
weight_col='weight',
class_mode="input")
batch = next(df_iterator)
assert len(batch) == 3 # (x, y, weights)
# check if input and output have the same shape and they're the same
assert(batch[0].all() == batch[1].all())
# check if the input and output images are not the same numpy array
input_img = batch[0][0]
output_img = batch[1][0]
output_img[0][0][0] += 1
assert input_img[0][0][0] != output_img[0][0][0]
assert np.array_equal(np.array([2, 5, 2, 5, 2]), batch[2])
# fail
df['weight'] = (['2', '5'] * len(df))[:len(df)]
with pytest.raises(TypeError):
image_data_generator.ImageDataGenerator().flow_from_dataframe(
df,
weight_col='weight',
class_mode="input"
)
def test_dataframe_iterator_class_mode_input(all_test_images, tmpdir):
# save the images in the paths
count = 0
filenames = []
for test_images in all_test_images:
for im in test_images:
filename = 'image-{}.png'.format(count)
im.save(str(tmpdir / filename))
filenames.append(filename)
count += 1
df = pd.DataFrame({"filename": filenames})
generator = image_data_generator.ImageDataGenerator()
df_autoencoder_iterator = generator.flow_from_dataframe(df, str(tmpdir),
x_col="filename",
y_col=None,
class_mode="input")
batch = next(df_autoencoder_iterator)
# check if input and output have the same shape and they're the same
assert np.allclose(batch[0], batch[1])
# check if the input and output images are not the same numpy array
input_img = batch[0][0]
output_img = batch[1][0]
output_img[0][0][0] += 1
assert(input_img[0][0][0] != output_img[0][0][0])
df_autoencoder_iterator = generator.flow_from_dataframe(df, str(tmpdir),
x_col="filename",
y_col="class",
class_mode="input")
batch = next(df_autoencoder_iterator)
# check if input and output have the same shape and they're the same
assert(batch[0].all() == batch[1].all())
# check if the input and output images are not the same numpy array
input_img = batch[0][0]
output_img = batch[1][0]
output_img[0][0][0] += 1
assert(input_img[0][0][0] != output_img[0][0][0])
def test_dataframe_iterator_class_mode_categorical_multi_label(all_test_images,
tmpdir):
# save the images in the paths
filenames = []
count = 0
for test_images in all_test_images:
for im in test_images:
filename = 'image-{}.png'.format(count)
im.save(str(tmpdir / filename))
filenames.append(filename)
count += 1
label_opt = ['a', 'b', ['a'], ['b'], ['a', 'b'], ['b', 'a']]
df = pd.DataFrame({
"filename": filenames,
"class": [random.choice(label_opt) for _ in filenames[:-2]] + ['b', 'a']
})
generator = image_data_generator.ImageDataGenerator()
df_iterator = generator.flow_from_dataframe(df, str(tmpdir))
batch_x, batch_y = next(df_iterator)
assert isinstance(batch_x, np.ndarray)
assert len(batch_x.shape) == 4
assert isinstance(batch_y, np.ndarray)
assert batch_y.shape == (len(batch_x), 2)
for labels in batch_y:
assert all(l in {0, 1} for l in labels)
# on first 3 batches
df = pd.DataFrame({
"filename": filenames,
"class": [['b', 'a']] + ['b'] + [['c']] + [random.choice(label_opt)
for _ in filenames[:-3]]
})
generator = image_data_generator.ImageDataGenerator()
df_iterator = generator.flow_from_dataframe(df, str(tmpdir), shuffle=False)
batch_x, batch_y = next(df_iterator)
assert isinstance(batch_x, np.ndarray)
assert len(batch_x.shape) == 4
assert isinstance(batch_y, np.ndarray)
assert batch_y.shape == (len(batch_x), 3)
for labels in batch_y:
assert all(l in {0, 1} for l in labels)
assert (batch_y[0] == np.array([1, 1, 0])).all()
assert (batch_y[1] == np.array([0, 1, 0])).all()
assert (batch_y[2] == np.array([0, 0, 1])).all()
def test_dataframe_iterator_class_mode_multi_output(all_test_images, tmpdir):
# save the images in the paths
filenames = []
count = 0
for test_images in all_test_images:
for im in test_images:
filename = 'image-{}.png'.format(count)
im.save(str(tmpdir / filename))
filenames.append(filename)
count += 1
# fit both outputs are a single number
df = pd.DataFrame({"filename": filenames}).assign(
output_0=np.random.uniform(size=len(filenames)),
output_1=np.random.uniform(size=len(filenames))
)
df_iterator = image_data_generator.ImageDataGenerator().flow_from_dataframe(
df, y_col=['output_0', 'output_1'], directory=str(tmpdir),
batch_size=3, shuffle=False, class_mode='multi_output'
)
batch_x, batch_y = next(df_iterator)
assert isinstance(batch_x, np.ndarray)
assert len(batch_x.shape) == 4
assert isinstance(batch_y, list)
assert len(batch_y) == 2
assert np.array_equal(batch_y[0],
np.array(df['output_0'].tolist()[:3]))
assert np.array_equal(batch_y[1],
np.array(df['output_1'].tolist()[:3]))
# if one of the outputs is a 1D array
df['output_1'] = [np.random.uniform(size=(2, 2, 1)).flatten()
for _ in range(len(df))]
df_iterator = image_data_generator.ImageDataGenerator().flow_from_dataframe(
df, y_col=['output_0', 'output_1'], directory=str(tmpdir),
batch_size=3, shuffle=False, class_mode='multi_output'
)
batch_x, batch_y = next(df_iterator)
assert isinstance(batch_x, np.ndarray)
assert len(batch_x.shape) == 4
assert isinstance(batch_y, list)
assert len(batch_y) == 2
assert np.array_equal(batch_y[0],
np.array(df['output_0'].tolist()[:3]))
assert np.array_equal(batch_y[1],
np.array(df['output_1'].tolist()[:3]))
# if one of the outputs is a 2D array
df['output_1'] = [np.random.uniform(size=(2, 2, 1))
for _ in range(len(df))]
df_iterator = image_data_generator.ImageDataGenerator().flow_from_dataframe(
df, y_col=['output_0', 'output_1'], directory=str(tmpdir),
batch_size=3, shuffle=False, class_mode='multi_output'
)
batch_x, batch_y = next(df_iterator)
assert isinstance(batch_x, np.ndarray)
assert len(batch_x.shape) == 4
assert isinstance(batch_y, list)
assert len(batch_y) == 2
assert np.array_equal(batch_y[0],
np.array(df['output_0'].tolist()[:3]))
assert np.array_equal(batch_y[1],
np.array(df['output_1'].tolist()[:3]))
# fail if single column
with pytest.raises(TypeError):
image_data_generator.ImageDataGenerator().flow_from_dataframe(
df, y_col='output_0',
directory=str(tmpdir),
class_mode='multi_output'
)
def test_dataframe_iterator_class_mode_raw(all_test_images, tmpdir):
# save the images in the paths
filenames = []
count = 0
for test_images in all_test_images:
for im in test_images:
filename = 'image-{}.png'.format(count)
im.save(str(tmpdir / filename))
filenames.append(filename)
count += 1
# case for 1D output
df = pd.DataFrame({"filename": filenames}).assign(
output_0=np.random.uniform(size=len(filenames)),
output_1=np.random.uniform(size=len(filenames))
)
df_iterator = image_data_generator.ImageDataGenerator().flow_from_dataframe(
df, y_col='output_0', directory=str(tmpdir),
batch_size=3, shuffle=False, class_mode='raw'
)
batch_x, batch_y = next(df_iterator)
assert isinstance(batch_x, np.ndarray)
assert len(batch_x.shape) == 4
assert isinstance(batch_y, np.ndarray)
assert batch_y.shape == (3,)
assert np.array_equal(batch_y, df['output_0'].values[:3])
# case with a 2D output
df_iterator = image_data_generator.ImageDataGenerator().flow_from_dataframe(
df, y_col=['output_0', 'output_1'], directory=str(tmpdir),
batch_size=3, shuffle=False, class_mode='raw'
)
batch_x, batch_y = next(df_iterator)
assert isinstance(batch_x, np.ndarray)
assert len(batch_x.shape) == 4
assert isinstance(batch_y, np.ndarray)
assert batch_y.shape == (3, 2)
assert np.array_equal(batch_y,
df[['output_0', 'output_1']].values[:3])
@pytest.mark.parametrize('validation_split,num_training', [
(0.25, 18),
(0.50, 12),
(0.75, 6),
])
def test_dataframe_iterator_with_validation_split(all_test_images, validation_split,
num_training, tmpdir):
num_classes = 2
# save the images in the tmpdir
count = 0
filenames = []
filenames_without = []
for test_images in all_test_images:
for im in test_images:
filename = "image-{}.png".format(count)
filename_without = "image-{}".format(count)
filenames.append(filename)
filenames_without.append(filename_without)
im.save(str(tmpdir / filename))
count += 1
df = pd.DataFrame({"filename": filenames,
"class": [str(random.randint(0, 1)) for _ in filenames]})
# create iterator
generator = image_data_generator.ImageDataGenerator(
validation_split=validation_split
)
df_sparse_iterator = generator.flow_from_dataframe(df,
str(tmpdir),
class_mode="sparse")
if np.isnan(next(df_sparse_iterator)[:][1]).any():
raise ValueError('Invalid values.')
with pytest.raises(ValueError):
generator.flow_from_dataframe(
df, tmpdir, subset='foo')
train_iterator = generator.flow_from_dataframe(df, str(tmpdir),
subset='training')
assert train_iterator.samples == num_training
valid_iterator = generator.flow_from_dataframe(df, str(tmpdir),
subset='validation')
assert valid_iterator.samples == count - num_training
# check number of classes and images
assert len(train_iterator.class_indices) == num_classes
assert len(train_iterator.classes) == num_training
assert len(set(train_iterator.filenames) &
set(filenames)) == num_training
def test_dataframe_iterator_with_custom_indexed_dataframe(all_test_images, tmpdir):
num_classes = 2
# save the images in the tmpdir
count = 0
filenames = []
for test_images in all_test_images:
for im in test_images:
filename = "image-{}.png".format(count)
filenames.append(filename)
im.save(str(tmpdir / filename))
count += 1
# create dataframes
classes = np.random.randint(num_classes, size=len(filenames))
classes = [str(c) for c in classes]
df = pd.DataFrame({"filename": filenames,
"class": classes})
df2 = pd.DataFrame({"filename": filenames,
"class": classes},
index=np.arange(1, len(filenames) + 1))
df3 = pd.DataFrame({"filename": filenames,
"class": classes},
index=filenames)
# create iterators
seed = 1
generator = image_data_generator.ImageDataGenerator()
df_iterator = generator.flow_from_dataframe(
df, str(tmpdir), seed=seed)
df2_iterator = generator.flow_from_dataframe(
df2, str(tmpdir), seed=seed)
df3_iterator = generator.flow_from_dataframe(
df3, str(tmpdir), seed=seed)
# Test all iterators return same pairs of arrays
for _ in range(len(filenames)):
a1, c1 = next(df_iterator)
a2, c2 = next(df2_iterator)
a3, c3 = next(df3_iterator)
assert np.array_equal(a1, a2)
assert np.array_equal(a1, a3)
assert np.array_equal(c1, c2)
assert np.array_equal(c1, c3)
def test_dataframe_iterator_n(all_test_images, tmpdir):
# save the images in the tmpdir
count = 0
filenames = []
for test_images in all_test_images:
for im in test_images:
filename = "image-{}.png".format(count)
filenames.append(filename)
im.save(str(tmpdir / filename))
count += 1
# exclude first two items
n_files = len(filenames)
input_filenames = filenames[2:]
# create dataframes
classes = np.random.randint(2, size=len(input_filenames))
classes = [str(c) for c in classes]
df = pd.DataFrame({"filename": input_filenames})
df2 = pd.DataFrame({"filename": input_filenames,
"class": classes})
# create iterators
generator = image_data_generator.ImageDataGenerator()
df_iterator = generator.flow_from_dataframe(
df, str(tmpdir), class_mode=None)
df2_iterator = generator.flow_from_dataframe(
df2, str(tmpdir), class_mode='binary')
# Test the number of items in iterators
assert df_iterator.n == n_files - 2
assert df2_iterator.n == n_files - 2
def test_dataframe_iterator_absolute_path(all_test_images, tmpdir):
# save the images in the tmpdir
count = 0
file_paths = []
for test_images in all_test_images:
for im in test_images:
filename = "image-{:0>5}.png".format(count)
file_path = str(tmpdir / filename)
file_paths.append(file_path)
im.save(file_path)
count += 1
# prepare an image with a forbidden extension.
file_path_fbd = str(tmpdir / 'image-forbid.fbd')
shutil.copy(file_path, file_path_fbd)
# create dataframes
classes = np.random.randint(2, size=len(file_paths))
classes = [str(c) for c in classes]
df = pd.DataFrame({"filename": file_paths})
df2 = pd.DataFrame({"filename": file_paths,
"class": classes})
df3 = pd.DataFrame({"filename": ['image-not-exist.png'] + file_paths})
df4 = pd.DataFrame({"filename": file_paths + [file_path_fbd]})
# create iterators
generator = image_data_generator.ImageDataGenerator()
df_iterator = generator.flow_from_dataframe(
df, None, class_mode=None,
shuffle=False, batch_size=1)
df2_iterator = generator.flow_from_dataframe(
df2, None, class_mode='binary',
shuffle=False, batch_size=1)
df3_iterator = generator.flow_from_dataframe(
df3, None, class_mode=None,
shuffle=False, batch_size=1)
df4_iterator = generator.flow_from_dataframe(
df4, None, class_mode=None,
shuffle=False, batch_size=1)
validation_split = 0.2
generator_split = image_data_generator.ImageDataGenerator(
validation_split=validation_split
)
df_train_iterator = generator_split.flow_from_dataframe(
df, None, class_mode=None,
shuffle=False, subset='training', batch_size=1)
df_val_iterator = generator_split.flow_from_dataframe(
df, None, class_mode=None,
shuffle=False, subset='validation', batch_size=1)
# Test the number of items in iterators
assert df_iterator.n == len(file_paths)
assert df2_iterator.n == len(file_paths)
assert df3_iterator.n == len(file_paths)
assert df4_iterator.n == len(file_paths)
assert df_val_iterator.n == int(validation_split * len(file_paths))
assert df_train_iterator.n == len(file_paths) - df_val_iterator.n
# Test flow_from_dataframe
for i in range(len(file_paths)):
a1 = next(df_iterator)
a2, _ = next(df2_iterator)
a3 = next(df3_iterator)
a4 = next(df4_iterator)
if i < df_val_iterator.n:
a5 = next(df_val_iterator)
else:
a5 = next(df_train_iterator)
assert np.array_equal(a1, a2)
assert np.array_equal(a1, a3)
assert np.array_equal(a1, a4)
assert np.array_equal(a1, a5)
def test_dataframe_iterator_with_subdirs(all_test_images, tmpdir):
num_classes = 2
# create folders and subfolders
paths = []
for cl in range(num_classes):
class_directory = 'class-{}'.format(cl)
classpaths = [
class_directory,
os.path.join(class_directory, 'subfolder-1'),
os.path.join(class_directory, 'subfolder-2'),
os.path.join(class_directory, 'subfolder-1', 'sub-subfolder')
]
for path in classpaths:
tmpdir.join(path).mkdir()
paths.append(classpaths)
# save the images in the paths
count = 0
filenames = []
for test_images in all_test_images:
for im in test_images:
# rotate image class
im_class = count % num_classes
# rotate subfolders
classpaths = paths[im_class]
filename = os.path.join(
classpaths[count % len(classpaths)],
'image-{}.png'.format(count))
filenames.append(filename)
im.save(str(tmpdir / filename))
count += 1
# create dataframe
classes = np.random.randint(num_classes, size=len(filenames))
classes = [str(c) for c in classes]
df = pd.DataFrame({"filename": filenames,
"class": classes})
# create iterator
generator = image_data_generator.ImageDataGenerator()
df_iterator = generator.flow_from_dataframe(
df, str(tmpdir), class_mode='binary')
# Test the number of items in iterator
assert df_iterator.n == len(filenames)
assert set(df_iterator.filenames) == set(filenames)
if __name__ == '__main__':
pytest.main([__file__])
|