1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
|
import os
import shutil
import tempfile
import numpy as np
import pytest
from PIL import Image
from keras_preprocessing.image import image_data_generator
@pytest.fixture(scope='module')
def all_test_images():
img_w = img_h = 20
rgb_images = []
rgba_images = []
gray_images = []
gray_images_16bit = []
gray_images_32bit = []
for n in range(8):
bias = np.random.rand(img_w, img_h, 1) * 64
variance = np.random.rand(img_w, img_h, 1) * (255 - 64)
# RGB
imarray = np.random.rand(img_w, img_h, 3) * variance + bias
im = Image.fromarray(imarray.astype('uint8')).convert('RGB')
rgb_images.append(im)
# RGBA
imarray = np.random.rand(img_w, img_h, 4) * variance + bias
im = Image.fromarray(imarray.astype('uint8')).convert('RGBA')
rgba_images.append(im)
# 8-bit grayscale
imarray = np.random.rand(img_w, img_h, 1) * variance + bias
im = Image.fromarray(imarray.astype('uint8').squeeze()).convert('L')
gray_images.append(im)
# 16-bit grayscale
imarray = np.array(
np.random.randint(-2147483648, 2147483647, (img_w, img_h))
)
im = Image.fromarray(imarray.astype('uint16'))
gray_images_16bit.append(im)
# 32-bit grayscale
im = Image.fromarray(imarray.astype('uint32'))
gray_images_32bit.append(im)
return [rgb_images, rgba_images,
gray_images, gray_images_16bit, gray_images_32bit]
def test_directory_iterator(all_test_images, tmpdir):
num_classes = 2
# create folders and subfolders
paths = []
for cl in range(num_classes):
class_directory = 'class-{}'.format(cl)
classpaths = [
class_directory,
os.path.join(class_directory, 'subfolder-1'),
os.path.join(class_directory, 'subfolder-2'),
os.path.join(class_directory, 'subfolder-1', 'sub-subfolder')
]
for path in classpaths:
tmpdir.join(path).mkdir()
paths.append(classpaths)
# save the images in the paths
count = 0
filenames = []
for test_images in all_test_images:
for im in test_images:
# rotate image class
im_class = count % num_classes
# rotate subfolders
classpaths = paths[im_class]
filename = os.path.join(
classpaths[count % len(classpaths)],
'image-{}.png'.format(count))
filenames.append(filename)
im.save(str(tmpdir / filename))
count += 1
# create iterator
generator = image_data_generator.ImageDataGenerator()
dir_iterator = generator.flow_from_directory(str(tmpdir))
# check number of classes and images
assert len(dir_iterator.class_indices) == num_classes
assert len(dir_iterator.classes) == count
assert set(dir_iterator.filenames) == set(filenames)
# Test invalid use cases
with pytest.raises(ValueError):
generator.flow_from_directory(str(tmpdir), color_mode='cmyk')
with pytest.raises(ValueError):
generator.flow_from_directory(str(tmpdir), class_mode='output')
def preprocessing_function(x):
"""This will fail if not provided by a Numpy array.
Note: This is made to enforce backward compatibility.
"""
assert x.shape == (26, 26, 3)
assert type(x) is np.ndarray
return np.zeros_like(x)
# Test usage as Sequence
generator = image_data_generator.ImageDataGenerator(
preprocessing_function=preprocessing_function)
dir_seq = generator.flow_from_directory(str(tmpdir),
target_size=(26, 26),
color_mode='rgb',
batch_size=3,
class_mode='categorical')
assert len(dir_seq) == np.ceil(count / 3.)
x1, y1 = dir_seq[1]
assert x1.shape == (3, 26, 26, 3)
assert y1.shape == (3, num_classes)
x1, y1 = dir_seq[5]
assert (x1 == 0).all()
with pytest.raises(ValueError):
x1, y1 = dir_seq[14] # there are 40 images and batch size is 3
def test_directory_iterator_class_mode_input(all_test_images, tmpdir):
tmpdir.join('class-1').mkdir()
# save the images in the paths
count = 0
for test_images in all_test_images:
for im in test_images:
filename = str(
tmpdir / 'class-1' / 'image-{}.png'.format(count))
im.save(filename)
count += 1
# create iterator
generator = image_data_generator.ImageDataGenerator()
dir_iterator = generator.flow_from_directory(str(tmpdir),
class_mode='input')
batch = next(dir_iterator)
# check if input and output have the same shape
assert(batch[0].shape == batch[1].shape)
# check if the input and output images are not the same numpy array
input_img = batch[0][0]
output_img = batch[1][0]
output_img[0][0][0] += 1
assert(input_img[0][0][0] != output_img[0][0][0])
@pytest.mark.parametrize('validation_split,num_training', [
(0.25, 30),
(0.50, 20),
(0.75, 10),
])
def test_directory_iterator_with_validation_split(all_test_images,
validation_split,
num_training):
num_classes = 2
tmp_folder = tempfile.mkdtemp(prefix='test_images')
# create folders and subfolders
paths = []
for cl in range(num_classes):
class_directory = 'class-{}'.format(cl)
classpaths = [
class_directory,
os.path.join(class_directory, 'subfolder-1'),
os.path.join(class_directory, 'subfolder-2'),
os.path.join(class_directory, 'subfolder-1', 'sub-subfolder')
]
for path in classpaths:
os.mkdir(os.path.join(tmp_folder, path))
paths.append(classpaths)
# save the images in the paths
count = 0
filenames = []
for test_images in all_test_images:
for im in test_images:
# rotate image class
im_class = count % num_classes
# rotate subfolders
classpaths = paths[im_class]
filename = os.path.join(
classpaths[count % len(classpaths)],
'image-{}.png'.format(count))
filenames.append(filename)
im.save(os.path.join(tmp_folder, filename))
count += 1
# create iterator
generator = image_data_generator.ImageDataGenerator(
validation_split=validation_split
)
with pytest.raises(ValueError):
generator.flow_from_directory(tmp_folder, subset='foo')
train_iterator = generator.flow_from_directory(tmp_folder,
subset='training')
assert train_iterator.samples == num_training
valid_iterator = generator.flow_from_directory(tmp_folder,
subset='validation')
assert valid_iterator.samples == count - num_training
# check number of classes and images
assert len(train_iterator.class_indices) == num_classes
assert len(train_iterator.classes) == num_training
assert len(set(train_iterator.filenames) &
set(filenames)) == num_training
shutil.rmtree(tmp_folder)
if __name__ == '__main__':
pytest.main([__file__])
|