File: numpy_array_iterator_test.py

package info (click to toggle)
keras-preprocessing 1.1.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 400 kB
  • sloc: python: 4,161; makefile: 11; sh: 10
file content (269 lines) | stat: -rw-r--r-- 8,550 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import numpy as np
import pytest

from PIL import Image

from keras_preprocessing.image import numpy_array_iterator
from keras_preprocessing.image import utils
from keras_preprocessing.image.image_data_generator import ImageDataGenerator


@pytest.fixture(scope='module')
def all_test_images():
    img_w = img_h = 20
    rgb_images = []
    rgba_images = []
    gray_images = []
    for n in range(8):
        bias = np.random.rand(img_w, img_h, 1) * 64
        variance = np.random.rand(img_w, img_h, 1) * (255 - 64)
        imarray = np.random.rand(img_w, img_h, 3) * variance + bias
        im = Image.fromarray(imarray.astype('uint8')).convert('RGB')
        rgb_images.append(im)

        imarray = np.random.rand(img_w, img_h, 4) * variance + bias
        im = Image.fromarray(imarray.astype('uint8')).convert('RGBA')
        rgba_images.append(im)

        imarray = np.random.rand(img_w, img_h, 1) * variance + bias
        im = Image.fromarray(
            imarray.astype('uint8').squeeze()).convert('L')
        gray_images.append(im)

    return [rgb_images, rgba_images, gray_images]


@pytest.fixture(scope='module')
def image_data_generator():
    return ImageDataGenerator(
        featurewise_center=True,
        samplewise_center=True,
        featurewise_std_normalization=True,
        samplewise_std_normalization=True,
        zca_whitening=True,
        rotation_range=90.,
        width_shift_range=0.1,
        height_shift_range=0.1,
        shear_range=0.5,
        zoom_range=0.2,
        channel_shift_range=0.,
        brightness_range=(1, 5),
        fill_mode='nearest',
        cval=0.5,
        horizontal_flip=True,
        vertical_flip=True,
        interpolation_order=1
    )


def test_numpy_array_iterator(image_data_generator, all_test_images, tmpdir):
    for test_images in all_test_images:
        img_list = []
        for im in test_images:
            img_list.append(utils.img_to_array(im)[None, ...])
        images = np.vstack(img_list)
        dsize = images.shape[0]

        iterator = numpy_array_iterator.NumpyArrayIterator(
            images,
            np.arange(images.shape[0]),
            image_data_generator,
            shuffle=False,
            save_to_dir=str(tmpdir),
            batch_size=3
        )
        x, y = next(iterator)
        assert x.shape == images[:3].shape
        assert list(y) == [0, 1, 2]

        # Test with sample weights
        iterator = numpy_array_iterator.NumpyArrayIterator(
            images,
            np.arange(images.shape[0]),
            image_data_generator,
            shuffle=False,
            sample_weight=np.arange(images.shape[0]) + 1,
            save_to_dir=str(tmpdir),
            batch_size=3
        )
        x, y, w = iterator.next()
        assert x.shape == images[:3].shape
        assert list(y) == [0, 1, 2]
        assert list(w) == [1, 2, 3]

        # Test with `shuffle=True`
        iterator = numpy_array_iterator.NumpyArrayIterator(
            images,
            np.arange(images.shape[0]),
            image_data_generator,
            shuffle=True,
            save_to_dir=str(tmpdir),
            batch_size=3,
            seed=42
        )
        x, y = iterator.next()
        assert x.shape == images[:3].shape
        # Check that the sequence is shuffled.
        assert list(y) != [0, 1, 2]

        # Test without y
        iterator = numpy_array_iterator.NumpyArrayIterator(
            images,
            None,
            image_data_generator,
            shuffle=True,
            save_to_dir=str(tmpdir),
            batch_size=3
        )
        x = iterator.next()
        assert type(x) is np.ndarray
        assert x.shape == images[:3].shape

        # Test with a single miscellaneous input data array
        x_misc1 = np.random.random(dsize)
        iterator = numpy_array_iterator.NumpyArrayIterator(
            (images, x_misc1),
            np.arange(dsize),
            image_data_generator,
            shuffle=False,
            batch_size=2
        )
        for i, (x, y) in enumerate(iterator):
            assert x[0].shape == images[:2].shape
            assert (x[1] == x_misc1[(i * 2):((i + 1) * 2)]).all()
            if i == 2:
                break

        # Test with two miscellaneous inputs
        x_misc2 = np.random.random((dsize, 3, 3))
        iterator = numpy_array_iterator.NumpyArrayIterator(
            (images, [x_misc1, x_misc2]),
            np.arange(dsize),
            image_data_generator,
            shuffle=False,
            batch_size=2
        )
        for i, (x, y) in enumerate(iterator):
            assert x[0].shape == images[:2].shape
            assert (x[1] == x_misc1[(i * 2):((i + 1) * 2)]).all()
            assert (x[2] == x_misc2[(i * 2):((i + 1) * 2)]).all()
            if i == 2:
                break

        # Test cases with `y = None`
        iterator = numpy_array_iterator.NumpyArrayIterator(
            images,
            None,
            image_data_generator,
            batch_size=3
        )
        x = iterator.next()
        assert type(x) is np.ndarray
        assert x.shape == images[:3].shape

        iterator = numpy_array_iterator.NumpyArrayIterator(
            (images, x_misc1),
            None,
            image_data_generator,
            batch_size=3,
            shuffle=False
        )
        x = iterator.next()
        assert type(x) is list
        assert x[0].shape == images[:3].shape
        assert (x[1] == x_misc1[:3]).all()

        iterator = numpy_array_iterator.NumpyArrayIterator(
            (images, [x_misc1, x_misc2]),
            None,
            image_data_generator,
            batch_size=3,
            shuffle=False
        )
        x = iterator.next()
        assert type(x) is list
        assert x[0].shape == images[:3].shape
        assert (x[1] == x_misc1[:3]).all()
        assert (x[2] == x_misc2[:3]).all()

        # Test with validation split
        generator = ImageDataGenerator(validation_split=0.2)
        iterator = numpy_array_iterator.NumpyArrayIterator(
            images,
            None,
            generator,
            batch_size=3
        )
        x = iterator.next()
        assert isinstance(x, np.ndarray)
        assert x.shape == images[:3].shape

        # Test some failure cases:
        x_misc_err = np.random.random((dsize + 1, 3, 3))

        with pytest.raises(ValueError) as e_info:
            numpy_array_iterator.NumpyArrayIterator(
                (images, x_misc_err),
                np.arange(dsize),
                generator,
                batch_size=3
            )
        assert str(e_info.value).find('All of the arrays in') != -1

        with pytest.raises(ValueError) as e_info:
            numpy_array_iterator.NumpyArrayIterator(
                (images, x_misc1),
                np.arange(dsize + 1),
                generator,
                batch_size=3
            )
        assert str(e_info.value).find('`x` (images tensor) and `y` (labels) ') != -1

        # Test `flow` behavior as Sequence
        seq = numpy_array_iterator.NumpyArrayIterator(
            images,
            np.arange(images.shape[0]),
            generator,
            shuffle=False, save_to_dir=str(tmpdir),
            batch_size=3
        )
        assert len(seq) == images.shape[0] // 3 + 1
        x, y = seq[0]
        assert x.shape == images[:3].shape
        assert list(y) == [0, 1, 2]

        # Test with `shuffle=True`
        seq = numpy_array_iterator.NumpyArrayIterator(
            images,
            np.arange(images.shape[0]),
            generator,
            shuffle=True,
            save_to_dir=str(tmpdir),
            batch_size=3,
            seed=123
        )
        x, y = seq[0]
        # Check that the sequence is shuffled.
        assert list(y) != [0, 1, 2]
        # `on_epoch_end` should reshuffle the sequence.
        seq.on_epoch_end()
        x2, y2 = seq[0]
        assert list(y) != list(y2)

    # test order_interpolation
    labels = np.array([[2, 2, 0, 2, 2],
                       [1, 3, 2, 3, 1],
                       [2, 1, 0, 1, 2],
                       [3, 1, 0, 2, 0],
                       [3, 1, 3, 2, 1]])
    label_generator = ImageDataGenerator(
        rotation_range=90.,
        interpolation_order=0
    )
    labels_gen = numpy_array_iterator.NumpyArrayIterator(
        labels[np.newaxis, ..., np.newaxis],
        None,
        label_generator,
        seed=123
    )
    assert (np.unique(labels) == np.unique(next(labels_gen))).all()