1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
|
from math import ceil
import pytest
import numpy as np
from numpy.testing import assert_allclose
from numpy.testing import assert_equal
from numpy.testing import assert_raises
from keras_preprocessing import sequence
def test_pad_sequences():
a = [[1], [1, 2], [1, 2, 3]]
# test padding
b = sequence.pad_sequences(a, maxlen=3, padding='pre')
assert_allclose(b, [[0, 0, 1], [0, 1, 2], [1, 2, 3]])
b = sequence.pad_sequences(a, maxlen=3, padding='post')
assert_allclose(b, [[1, 0, 0], [1, 2, 0], [1, 2, 3]])
# test truncating
b = sequence.pad_sequences(a, maxlen=2, truncating='pre')
assert_allclose(b, [[0, 1], [1, 2], [2, 3]])
b = sequence.pad_sequences(a, maxlen=2, truncating='post')
assert_allclose(b, [[0, 1], [1, 2], [1, 2]])
# test value
b = sequence.pad_sequences(a, maxlen=3, value=1)
assert_allclose(b, [[1, 1, 1], [1, 1, 2], [1, 2, 3]])
def test_pad_sequences_str():
a = [['1'], ['1', '2'], ['1', '2', '3']]
# test padding
b = sequence.pad_sequences(a, maxlen=3, padding='pre', value='pad', dtype=object)
assert_equal(b, [['pad', 'pad', '1'], ['pad', '1', '2'], ['1', '2', '3']])
b = sequence.pad_sequences(a, maxlen=3, padding='post', value='pad', dtype='<U3')
assert_equal(b, [['1', 'pad', 'pad'], ['1', '2', 'pad'], ['1', '2', '3']])
# test truncating
b = sequence.pad_sequences(a, maxlen=2, truncating='pre', value='pad',
dtype=object)
assert_equal(b, [['pad', '1'], ['1', '2'], ['2', '3']])
b = sequence.pad_sequences(a, maxlen=2, truncating='post', value='pad',
dtype='<U3')
assert_equal(b, [['pad', '1'], ['1', '2'], ['1', '2']])
with pytest.raises(ValueError, match="`dtype` int32 is not compatible with "):
sequence.pad_sequences(a, maxlen=2, truncating='post', value='pad')
def test_pad_sequences_vector():
a = [[[1, 1]],
[[2, 1], [2, 2]],
[[3, 1], [3, 2], [3, 3]]]
# test padding
b = sequence.pad_sequences(a, maxlen=3, padding='pre')
assert_allclose(b, [[[0, 0], [0, 0], [1, 1]],
[[0, 0], [2, 1], [2, 2]],
[[3, 1], [3, 2], [3, 3]]])
b = sequence.pad_sequences(a, maxlen=3, padding='post')
assert_allclose(b, [[[1, 1], [0, 0], [0, 0]],
[[2, 1], [2, 2], [0, 0]],
[[3, 1], [3, 2], [3, 3]]])
# test truncating
b = sequence.pad_sequences(a, maxlen=2, truncating='pre')
assert_allclose(b, [[[0, 0], [1, 1]],
[[2, 1], [2, 2]],
[[3, 2], [3, 3]]])
b = sequence.pad_sequences(a, maxlen=2, truncating='post')
assert_allclose(b, [[[0, 0], [1, 1]],
[[2, 1], [2, 2]],
[[3, 1], [3, 2]]])
# test value
b = sequence.pad_sequences(a, maxlen=3, value=1)
assert_allclose(b, [[[1, 1], [1, 1], [1, 1]],
[[1, 1], [2, 1], [2, 2]],
[[3, 1], [3, 2], [3, 3]]])
def test_make_sampling_table():
a = sequence.make_sampling_table(3)
assert_allclose(a, np.asarray([0.00315225, 0.00315225, 0.00547597]),
rtol=.1)
def test_skipgrams():
# test with no window size and binary labels
couples, labels = sequence.skipgrams(np.arange(3), vocabulary_size=3)
for couple in couples:
assert couple[0] in [0, 1, 2] and couple[1] in [0, 1, 2]
# test window size and categorical labels
couples, labels = sequence.skipgrams(np.arange(5),
vocabulary_size=5,
window_size=1,
categorical=True)
for couple in couples:
assert couple[0] - couple[1] <= 3
for l in labels:
assert len(l) == 2
def test_remove_long_seq():
maxlen = 5
seq = [
[1, 2, 3],
[1, 2, 3, 4, 5, 6],
]
label = ['a', 'b']
new_seq, new_label = sequence._remove_long_seq(maxlen, seq, label)
assert new_seq == [[1, 2, 3]]
assert new_label == ['a']
def test_TimeseriesGenerator_serde():
data = np.array([[i] for i in range(50)])
targets = np.array([[i] for i in range(50)])
data_gen = sequence.TimeseriesGenerator(data, targets,
length=10,
sampling_rate=2,
batch_size=2)
json_gen = data_gen.to_json()
recovered_gen = sequence.timeseries_generator_from_json(json_gen)
assert data_gen.batch_size == recovered_gen.batch_size
assert data_gen.end_index == recovered_gen.end_index
assert data_gen.length == recovered_gen.length
assert data_gen.reverse == recovered_gen.reverse
assert data_gen.sampling_rate == recovered_gen.sampling_rate
assert data_gen.shuffle == recovered_gen.shuffle
assert data_gen.start_index == data_gen.start_index
assert data_gen.stride == data_gen.stride
assert (data_gen.data == recovered_gen.data).all()
assert (data_gen.targets == recovered_gen.targets).all()
def test_TimeseriesGenerator():
data = np.array([[i] for i in range(50)])
targets = np.array([[i] for i in range(50)])
data_gen = sequence.TimeseriesGenerator(data, targets,
length=10,
sampling_rate=2,
batch_size=2)
assert len(data_gen) == 20
assert (np.allclose(data_gen[0][0],
np.array([[[0], [2], [4], [6], [8]],
[[1], [3], [5], [7], [9]]])))
assert (np.allclose(data_gen[0][1],
np.array([[10], [11]])))
assert (np.allclose(data_gen[1][0],
np.array([[[2], [4], [6], [8], [10]],
[[3], [5], [7], [9], [11]]])))
assert (np.allclose(data_gen[1][1],
np.array([[12], [13]])))
data_gen = sequence.TimeseriesGenerator(data, targets,
length=10,
sampling_rate=2,
reverse=True,
batch_size=2)
assert len(data_gen) == 20
assert (np.allclose(data_gen[0][0],
np.array([[[8], [6], [4], [2], [0]],
[[9], [7], [5], [3], [1]]])))
assert (np.allclose(data_gen[0][1],
np.array([[10], [11]])))
data_gen = sequence.TimeseriesGenerator(data, targets,
length=10,
sampling_rate=2,
shuffle=True,
batch_size=1)
batch = data_gen[0]
r = batch[1][0][0]
assert (np.allclose(batch[0],
np.array([[[r - 10],
[r - 8],
[r - 6],
[r - 4],
[r - 2]]])))
assert (np.allclose(batch[1], np.array([[r], ])))
data_gen = sequence.TimeseriesGenerator(data, targets,
length=10,
sampling_rate=2,
stride=2,
batch_size=2)
assert len(data_gen) == 10
assert (np.allclose(data_gen[1][0],
np.array([[[4], [6], [8], [10], [12]],
[[6], [8], [10], [12], [14]]])))
assert (np.allclose(data_gen[1][1],
np.array([[14], [16]])))
data_gen = sequence.TimeseriesGenerator(data, targets,
length=10,
sampling_rate=2,
start_index=10,
end_index=30,
batch_size=2)
assert len(data_gen) == 6
assert (np.allclose(data_gen[0][0],
np.array([[[10], [12], [14], [16], [18]],
[[11], [13], [15], [17], [19]]])))
assert (np.allclose(data_gen[0][1],
np.array([[20], [21]])))
data = np.array([np.random.random_sample((1, 2, 3, 4)) for i in range(50)])
targets = np.array([np.random.random_sample((3, 2, 1)) for i in range(50)])
data_gen = sequence.TimeseriesGenerator(data, targets,
length=10,
sampling_rate=2,
start_index=10,
end_index=30,
batch_size=2)
assert len(data_gen) == 6
assert np.allclose(data_gen[0][0], np.array(
[np.array(data[10:19:2]), np.array(data[11:20:2])]))
assert (np.allclose(data_gen[0][1],
np.array([targets[20], targets[21]])))
with assert_raises(ValueError) as context:
sequence.TimeseriesGenerator(data, targets, length=50)
error = str(context.exception)
assert '`start_index+length=50 > end_index=49` is disallowed' in error
def test_TimeSeriesGenerator_doesnt_miss_any_sample():
x = np.array([[i] for i in range(10)])
for length in range(3, 10):
g = sequence.TimeseriesGenerator(x, x,
length=length,
batch_size=1)
expected = max(0, len(x) - length)
actual = len(g)
assert expected == actual
if len(g) > 0:
# All elements in range(length, 10) should be used as current step
expected = np.arange(length, 10).reshape(-1, 1)
y = np.concatenate([g[ix][1] for ix in range(len(g))], axis=0)
assert_allclose(y, expected)
x = np.array([[i] for i in range(23)])
strides = (1, 1, 5, 7, 3, 5, 3)
lengths = (3, 3, 4, 3, 1, 3, 7)
batch_sizes = (6, 6, 6, 5, 6, 6, 6)
shuffles = (False, True, True, False, False, False, False)
for stride, length, batch_size, shuffle in zip(strides,
lengths,
batch_sizes,
shuffles):
g = sequence.TimeseriesGenerator(x, x,
length=length,
sampling_rate=1,
stride=stride,
start_index=0,
end_index=None,
shuffle=shuffle,
reverse=False,
batch_size=batch_size)
if shuffle:
# all batches have the same size when shuffle is True.
expected_sequences = ceil(
(23 - length) / float(batch_size * stride)) * batch_size
else:
# last batch will be different if `(samples - length) / stride`
# is not a multiple of `batch_size`.
expected_sequences = ceil((23 - length) / float(stride))
expected_batches = ceil(expected_sequences / float(batch_size))
y = [g[ix][1] for ix in range(len(g))]
actual_sequences = sum(len(_y) for _y in y)
actual_batches = len(y)
assert expected_sequences == actual_sequences
assert expected_batches == actual_batches
if __name__ == '__main__':
pytest.main([__file__])
|