File: mkdocs.yml

package info (click to toggle)
keras 2.3.1%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 9,288 kB
  • sloc: python: 48,266; javascript: 1,794; xml: 297; makefile: 36; sh: 30
file content (90 lines) | stat: -rw-r--r-- 3,269 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
site_name: Keras Documentation
theme:
  name: null
  custom_dir: theme
  static_templates:
    - 404.html
  include_search_page: true
  search_index_only: false
  highlightjs: true
  hljs_languages: []
  include_homepage_in_sidebar: true
  prev_next_buttons_location: bottom
  navigation_depth: 4
  titles_only: false
  sticky_navigation: true
  collapse_navigation: true

docs_dir: sources
repo_url: http://github.com/keras-team/keras
site_url: http://keras.io/
site_description: 'Documentation for Keras, the Python Deep Learning library.'
use_directory_urls: false

dev_addr: '0.0.0.0:8000'

nav:
- Home: index.md
- Why use Keras: why-use-keras.md
- Getting started:
  - Guide to the Sequential model: getting-started/sequential-model-guide.md
  - Guide to the Functional API: getting-started/functional-api-guide.md
  - FAQ: getting-started/faq.md
- Models:
  - About Keras models: models/about-keras-models.md
  - Sequential: models/sequential.md
  - Model (functional API): models/model.md
- Layers:
  - About Keras layers: layers/about-keras-layers.md
  - Core Layers: layers/core.md
  - Convolutional Layers: layers/convolutional.md
  - Pooling Layers: layers/pooling.md
  - Locally-connected Layers: layers/local.md
  - Recurrent Layers: layers/recurrent.md
  - Embedding Layers: layers/embeddings.md
  - Merge Layers: layers/merge.md
  - Advanced Activations Layers: layers/advanced-activations.md
  - Normalization Layers: layers/normalization.md
  - Noise layers: layers/noise.md
  - Layer wrappers: layers/wrappers.md
  - Writing your own Keras layers: layers/writing-your-own-keras-layers.md
- Preprocessing:
  - Sequence Preprocessing: preprocessing/sequence.md
  - Text Preprocessing: preprocessing/text.md
  - Image Preprocessing: preprocessing/image.md
- Losses: losses.md
- Metrics: metrics.md
- Optimizers: optimizers.md
- Activations: activations.md
- Callbacks: callbacks.md
- Datasets: datasets.md
- Applications: applications.md
- Backend: backend.md
- Initializers: initializers.md
- Regularizers: regularizers.md
- Constraints: constraints.md
- Visualization: visualization.md
- Scikit-learn API: scikit-learn-api.md
- Utils: utils.md
- Contributing: contributing.md
- Examples:
  - Addition RNN: examples/addition_rnn.md
  - Custom layer - antirectifier: examples/antirectifier.md
  - Baby RNN: examples/babi_rnn.md
  - Baby MemNN: examples/babi_memnn.md
  - CIFAR-10 CNN: examples/cifar10_cnn.md
  - CIFAR-10 ResNet: examples/cifar10_resnet.md
  - Convolution filter visualization: examples/conv_filter_visualization.md
  - Convolutional LSTM: examples/conv_lstm.md
  - Deep Dream: examples/deep_dream.md
  - Image OCR: examples/image_ocr.md
  - Bidirectional LSTM: examples/imdb_bidirectional_lstm.md
  - 1D CNN for text classification: examples/imdb_cnn.md
  - Sentiment classification CNN-LSTM: examples/imdb_cnn_lstm.md
  - Fasttext for text classification: examples/imdb_fasttext.md
  - Sentiment classification LSTM: examples/imdb_lstm.md
  - Sequence to sequence - training: examples/lstm_seq2seq.md
  - Sequence to sequence - prediction: examples/lstm_seq2seq_restore.md
  - Stateful LSTM: examples/lstm_stateful.md
  - LSTM for text generation: examples/lstm_text_generation.md
  - Auxiliary Classifier GAN: examples/mnist_acgan.md