File: index.html

package info (click to toggle)
keras 2.3.1%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 9,288 kB
  • sloc: python: 48,266; javascript: 1,794; xml: 297; makefile: 36; sh: 30
file content (519 lines) | stat: -rw-r--r-- 22,294 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  <meta http-equiv="X-UA-Compatible" content="IE=edge">
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  
  <link rel="canonical" href="http://keras.io/activations/">
  <link rel="shortcut icon" href="../img/favicon.ico">
  <title>Activations - Keras Documentation</title>
  <link href='https://fonts.googleapis.com/css?family=Lato:400,700|Source+Sans+Pro:400,700|Inconsolata:400,700' rel='stylesheet' type='text/css'>

  <link rel="stylesheet" href="../css/theme.css" type="text/css" />
  <link rel="stylesheet" href="../css/theme_extra.css" type="text/css" />
  <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/styles/github.min.css">
  
  <script>
    // Current page data
    var mkdocs_page_name = "Activations";
    var mkdocs_page_input_path = "activations.md";
    var mkdocs_page_url = "/activations/";
  </script>
  
  <script src="../js/jquery-2.1.1.min.js" defer></script>
  <script src="../js/modernizr-2.8.3.min.js" defer></script>
  <script src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/highlight.min.js"></script>
  <script>hljs.initHighlightingOnLoad();</script> 
  
  <script>
      (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
      (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
      m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
      })(window,document,'script','https://www.google-analytics.com/analytics.js','ga');

      ga('create', 'UA-61785484-1', 'keras.io');
      ga('send', 'pageview');
  </script>
  
</head>

<body class="wy-body-for-nav" role="document">

  <div class="wy-grid-for-nav">

    
    <nav data-toggle="wy-nav-shift" class="wy-nav-side stickynav">
    <div class="wy-side-scroll">
      <a href="">
        <div class="keras-logo">
          <img src="/img/keras-logo-small.jpg" class="keras-logo-img">
          Keras Documentation
        </div>
      </a>

      <div class="wy-side-nav-search">
        <div role="search">
  <form id ="rtd-search-form" class="wy-form" action="../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" title="Type search term here" />
  </form>
</div>
      </div>

      <div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="..">Home</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../why-use-keras/">Why use Keras</a>
                    </li>
                </ul>
                <p class="caption"><span class="caption-text">Getting started</span></p>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../getting-started/sequential-model-guide/">Guide to the Sequential model</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../getting-started/functional-api-guide/">Guide to the Functional API</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../getting-started/faq/">FAQ</a>
                    </li>
                </ul>
                <p class="caption"><span class="caption-text">Models</span></p>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../models/about-keras-models/">About Keras models</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../models/sequential/">Sequential</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../models/model/">Model (functional API)</a>
                    </li>
                </ul>
                <p class="caption"><span class="caption-text">Layers</span></p>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../layers/about-keras-layers/">About Keras layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../layers/core/">Core Layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../layers/convolutional/">Convolutional Layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../layers/pooling/">Pooling Layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../layers/local/">Locally-connected Layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../layers/recurrent/">Recurrent Layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../layers/embeddings/">Embedding Layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../layers/merge/">Merge Layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../layers/advanced-activations/">Advanced Activations Layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../layers/normalization/">Normalization Layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../layers/noise/">Noise layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../layers/wrappers/">Layer wrappers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../layers/writing-your-own-keras-layers/">Writing your own Keras layers</a>
                    </li>
                </ul>
                <p class="caption"><span class="caption-text">Preprocessing</span></p>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../preprocessing/sequence/">Sequence Preprocessing</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../preprocessing/text/">Text Preprocessing</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../preprocessing/image/">Image Preprocessing</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../losses/">Losses</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../metrics/">Metrics</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../optimizers/">Optimizers</a>
                    </li>
                </ul>
                <ul class="current">
                    <li class="toctree-l1 current"><a class="reference internal current" href="./">Activations</a>
    <ul class="current">
    </ul>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../callbacks/">Callbacks</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../datasets/">Datasets</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../applications/">Applications</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../backend/">Backend</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../initializers/">Initializers</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../regularizers/">Regularizers</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../constraints/">Constraints</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../visualization/">Visualization</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../scikit-learn-api/">Scikit-learn API</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../utils/">Utils</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../contributing/">Contributing</a>
                    </li>
                </ul>
                <p class="caption"><span class="caption-text">Examples</span></p>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../examples/addition_rnn/">Addition RNN</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../examples/antirectifier/">Custom layer - antirectifier</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../examples/babi_rnn/">Baby RNN</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../examples/babi_memnn/">Baby MemNN</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../examples/cifar10_cnn/">CIFAR-10 CNN</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../examples/cifar10_resnet/">CIFAR-10 ResNet</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../examples/conv_filter_visualization/">Convolution filter visualization</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../examples/conv_lstm/">Convolutional LSTM</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../examples/deep_dream/">Deep Dream</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../examples/image_ocr/">Image OCR</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../examples/imdb_bidirectional_lstm/">Bidirectional LSTM</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../examples/imdb_cnn/">1D CNN for text classification</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../examples/imdb_cnn_lstm/">Sentiment classification CNN-LSTM</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../examples/imdb_fasttext/">Fasttext for text classification</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../examples/imdb_lstm/">Sentiment classification LSTM</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../examples/lstm_seq2seq/">Sequence to sequence - training</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../examples/lstm_seq2seq_restore/">Sequence to sequence - prediction</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../examples/lstm_stateful/">Stateful LSTM</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../examples/lstm_text_generation/">LSTM for text generation</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../examples/mnist_acgan/">Auxiliary Classifier GAN</a>
                    </li>
                </ul>
      </div>
    </div>
    </nav>

    <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">

      
      <nav class="wy-nav-top" role="navigation" aria-label="top navigation">
        <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
        <a href="..">Keras Documentation</a>
      </nav>

      
      <div class="wy-nav-content">
        <div class="rst-content">
          <div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
    <li><a href="..">Docs</a> &raquo;</li>
    
      
    
    <li>Activations</li>
    <li class="wy-breadcrumbs-aside">
      
        <a href="https://github.com/keras-team/keras/tree/master/docs"
          class="icon icon-github"> Edit on GitHub</a>
      
    </li>
  </ul>
  
  <hr/>
</div>
          <div role="main">
            <div class="section">
              
                <h2 id="usage-of-activations">Usage of activations</h2>
<p>Activations can either be used through an <code>Activation</code> layer, or through the <code>activation</code> argument supported by all forward layers:</p>
<pre><code class="python">from keras.layers import Activation, Dense

model.add(Dense(64))
model.add(Activation('tanh'))
</code></pre>

<p>This is equivalent to:</p>
<pre><code class="python">model.add(Dense(64, activation='tanh'))
</code></pre>

<p>You can also pass an element-wise TensorFlow/Theano/CNTK function as an activation:</p>
<pre><code class="python">from keras import backend as K

model.add(Dense(64, activation=K.tanh))
</code></pre>

<h2 id="available-activations">Available activations</h2>
<h3 id="elu">elu</h3>
<pre><code class="python">keras.activations.elu(x, alpha=1.0)
</code></pre>

<p>Exponential linear unit.</p>
<p><strong>Arguments</strong></p>
<ul>
<li><strong>x</strong>: Input tensor.</li>
<li><strong>alpha</strong>: A scalar, slope of negative section.</li>
</ul>
<p><strong>Returns</strong></p>
<p>The exponential linear activation: <code>x</code> if <code>x &gt; 0</code> and
<code>alpha * (exp(x)-1)</code> if <code>x &lt; 0</code>.</p>
<p><strong>References</strong></p>
<ul>
<li><a href="https://arxiv.org/abs/1511.07289">Fast and Accurate Deep Network Learning by Exponential
   Linear Units (ELUs)</a></li>
</ul>
<hr />
<h3 id="softmax">softmax</h3>
<pre><code class="python">keras.activations.softmax(x, axis=-1)
</code></pre>

<p>Softmax activation function.</p>
<p><strong>Arguments</strong></p>
<ul>
<li><strong>x</strong>: Input tensor.</li>
<li><strong>axis</strong>: Integer, axis along which the softmax normalization is applied.</li>
</ul>
<p><strong>Returns</strong></p>
<p>Tensor, output of softmax transformation.</p>
<p><strong>Raises</strong></p>
<ul>
<li><strong>ValueError</strong>: In case <code>dim(x) == 1</code>.</li>
</ul>
<hr />
<h3 id="selu">selu</h3>
<pre><code class="python">keras.activations.selu(x)
</code></pre>

<p>Scaled Exponential Linear Unit (SELU).</p>
<p>SELU is equal to: <code>scale * elu(x, alpha)</code>, where alpha and scale
are predefined constants. The values of <code>alpha</code> and <code>scale</code> are
chosen so that the mean and variance of the inputs are preserved
between two consecutive layers as long as the weights are initialized
correctly (see <code>lecun_normal</code> initialization) and the number of inputs
is "large enough" (see references for more information).</p>
<p><strong>Arguments</strong></p>
<ul>
<li><strong>x</strong>: A tensor or variable to compute the activation function for.</li>
</ul>
<p><strong>Returns</strong></p>
<p>The scaled exponential unit activation: <code>scale * elu(x, alpha)</code>.</p>
<p><strong>Note</strong></p>
<ul>
<li>To be used together with the initialization "lecun_normal".</li>
<li>To be used together with the dropout variant "AlphaDropout".</li>
</ul>
<p><strong>References</strong></p>
<ul>
<li><a href="https://arxiv.org/abs/1706.02515">Self-Normalizing Neural Networks</a></li>
</ul>
<hr />
<h3 id="softplus">softplus</h3>
<pre><code class="python">keras.activations.softplus(x)
</code></pre>

<p>Softplus activation function.</p>
<p><strong>Arguments</strong></p>
<ul>
<li><strong>x</strong>: Input tensor.</li>
</ul>
<p><strong>Returns</strong></p>
<p>The softplus activation: <code>log(exp(x) + 1)</code>.</p>
<hr />
<h3 id="softsign">softsign</h3>
<pre><code class="python">keras.activations.softsign(x)
</code></pre>

<p>Softsign activation function.</p>
<p><strong>Arguments</strong></p>
<ul>
<li><strong>x</strong>: Input tensor.</li>
</ul>
<p><strong>Returns</strong></p>
<p>The softsign activation: <code>x / (abs(x) + 1)</code>.</p>
<hr />
<h3 id="relu">relu</h3>
<pre><code class="python">keras.activations.relu(x, alpha=0.0, max_value=None, threshold=0.0)
</code></pre>

<p>Rectified Linear Unit.</p>
<p>With default values, it returns element-wise <code>max(x, 0)</code>.</p>
<p>Otherwise, it follows:
<code>f(x) = max_value</code> for <code>x &gt;= max_value</code>,
<code>f(x) = x</code> for <code>threshold &lt;= x &lt; max_value</code>,
<code>f(x) = alpha * (x - threshold)</code> otherwise.</p>
<p><strong>Arguments</strong></p>
<ul>
<li><strong>x</strong>: Input tensor.</li>
<li><strong>alpha</strong>: float. Slope of the negative part. Defaults to zero.</li>
<li><strong>max_value</strong>: float. Saturation threshold.</li>
<li><strong>threshold</strong>: float. Threshold value for thresholded activation.</li>
</ul>
<p><strong>Returns</strong></p>
<p>A tensor.</p>
<hr />
<h3 id="tanh">tanh</h3>
<pre><code class="python">keras.activations.tanh(x)
</code></pre>

<p>Hyperbolic tangent activation function.</p>
<p><strong>Arguments</strong></p>
<ul>
<li><strong>x</strong>: Input tensor.</li>
</ul>
<p><strong>Returns</strong></p>
<p>The hyperbolic activation:
<code>tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))</code></p>
<hr />
<h3 id="sigmoid">sigmoid</h3>
<pre><code class="python">keras.activations.sigmoid(x)
</code></pre>

<p>Sigmoid activation function.</p>
<p><strong>Arguments</strong></p>
<ul>
<li><strong>x</strong>: Input tensor.</li>
</ul>
<p><strong>Returns</strong></p>
<p>The sigmoid activation: <code>1 / (1 + exp(-x))</code>.</p>
<hr />
<h3 id="hard_sigmoid">hard_sigmoid</h3>
<pre><code class="python">keras.activations.hard_sigmoid(x)
</code></pre>

<p>Hard sigmoid activation function.</p>
<p>Faster to compute than sigmoid activation.</p>
<p><strong>Arguments</strong></p>
<ul>
<li><strong>x</strong>: Input tensor.</li>
</ul>
<p><strong>Returns</strong></p>
<p>Hard sigmoid activation:</p>
<ul>
<li><code>0</code> if <code>x &lt; -2.5</code></li>
<li><code>1</code> if <code>x &gt; 2.5</code></li>
<li><code>0.2 * x + 0.5</code> if <code>-2.5 &lt;= x &lt;= 2.5</code>.</li>
</ul>
<hr />
<h3 id="exponential">exponential</h3>
<pre><code class="python">keras.activations.exponential(x)
</code></pre>

<p>Exponential (base e) activation function.</p>
<p><strong>Arguments</strong></p>
<ul>
<li><strong>x</strong>: Input tensor.</li>
</ul>
<p><strong>Returns</strong></p>
<p>Exponential activation: <code>exp(x)</code>.</p>
<hr />
<h3 id="linear">linear</h3>
<pre><code class="python">keras.activations.linear(x)
</code></pre>

<p>Linear (i.e. identity) activation function.</p>
<p><strong>Arguments</strong></p>
<ul>
<li><strong>x</strong>: Input tensor.</li>
</ul>
<p><strong>Returns</strong></p>
<p>Input tensor, unchanged.</p>
<h2 id="on-advanced-activations">On "Advanced Activations"</h2>
<p>Activations that are more complex than a simple TensorFlow/Theano/CNTK function (eg. learnable activations, which maintain a state) are available as <a href="../layers/advanced-activations/">Advanced Activation layers</a>, and can be found in the module <code>keras.layers.advanced_activations</code>. These include <code>PReLU</code> and <code>LeakyReLU</code>.</p>
              
            </div>
          </div>
          <footer>
  
    <div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
      
        <a href="../callbacks/" class="btn btn-neutral float-right" title="Callbacks">Next <span class="icon icon-circle-arrow-right"></span></a>
      
      
        <a href="../optimizers/" class="btn btn-neutral" title="Optimizers"><span class="icon icon-circle-arrow-left"></span> Previous</a>
      
    </div>
  

  <hr/>

  <div role="contentinfo">
    <!-- Copyright etc -->
    
  </div>

  Built with <a href="https://www.mkdocs.org/">MkDocs</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
      
        </div>
      </div>

    </section>

  </div>

  <div class="rst-versions" role="note" aria-label="versions">
    <span class="rst-current-version" data-toggle="rst-current-version">
      
          <a href="http://github.com/keras-team/keras/" class="fa fa-github" style="float: left; color: #fcfcfc"> GitHub</a>
      
      
        <span><a href="../optimizers/" style="color: #fcfcfc;">&laquo; Previous</a></span>
      
      
        <span style="margin-left: 15px"><a href="../callbacks/" style="color: #fcfcfc">Next &raquo;</a></span>
      
    </span>
</div>
    <script>var base_url = '..';</script>
    <script src="../js/theme.js" defer></script>
      <script src="../search/main.js" defer></script>
    <script type="text/javascript" defer>
        window.onload = function () {
            SphinxRtdTheme.Navigation.enable(true);
        };
    </script>

</body>
</html>