File: index.html

package info (click to toggle)
keras 2.3.1%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 9,288 kB
  • sloc: python: 48,266; javascript: 1,794; xml: 297; makefile: 36; sh: 30
file content (616 lines) | stat: -rw-r--r-- 27,294 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  <meta http-equiv="X-UA-Compatible" content="IE=edge">
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  
  <link rel="canonical" href="http://keras.io/datasets/">
  <link rel="shortcut icon" href="../img/favicon.ico">
  <title>Datasets - Keras Documentation</title>
  <link href='https://fonts.googleapis.com/css?family=Lato:400,700|Source+Sans+Pro:400,700|Inconsolata:400,700' rel='stylesheet' type='text/css'>

  <link rel="stylesheet" href="../css/theme.css" type="text/css" />
  <link rel="stylesheet" href="../css/theme_extra.css" type="text/css" />
  <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/styles/github.min.css">
  
  <script>
    // Current page data
    var mkdocs_page_name = "Datasets";
    var mkdocs_page_input_path = "datasets.md";
    var mkdocs_page_url = "/datasets/";
  </script>
  
  <script src="../js/jquery-2.1.1.min.js" defer></script>
  <script src="../js/modernizr-2.8.3.min.js" defer></script>
  <script src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/highlight.min.js"></script>
  <script>hljs.initHighlightingOnLoad();</script> 
  
  <script>
      (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
      (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
      m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
      })(window,document,'script','https://www.google-analytics.com/analytics.js','ga');

      ga('create', 'UA-61785484-1', 'keras.io');
      ga('send', 'pageview');
  </script>
  
</head>

<body class="wy-body-for-nav" role="document">

  <div class="wy-grid-for-nav">

    
    <nav data-toggle="wy-nav-shift" class="wy-nav-side stickynav">
    <div class="wy-side-scroll">
      <a href="">
        <div class="keras-logo">
          <img src="/img/keras-logo-small.jpg" class="keras-logo-img">
          Keras Documentation
        </div>
      </a>

      <div class="wy-side-nav-search">
        <div role="search">
  <form id ="rtd-search-form" class="wy-form" action="../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" title="Type search term here" />
  </form>
</div>
      </div>

      <div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="..">Home</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../why-use-keras/">Why use Keras</a>
                    </li>
                </ul>
                <p class="caption"><span class="caption-text">Getting started</span></p>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../getting-started/sequential-model-guide/">Guide to the Sequential model</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../getting-started/functional-api-guide/">Guide to the Functional API</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../getting-started/faq/">FAQ</a>
                    </li>
                </ul>
                <p class="caption"><span class="caption-text">Models</span></p>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../models/about-keras-models/">About Keras models</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../models/sequential/">Sequential</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../models/model/">Model (functional API)</a>
                    </li>
                </ul>
                <p class="caption"><span class="caption-text">Layers</span></p>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../layers/about-keras-layers/">About Keras layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../layers/core/">Core Layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../layers/convolutional/">Convolutional Layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../layers/pooling/">Pooling Layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../layers/local/">Locally-connected Layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../layers/recurrent/">Recurrent Layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../layers/embeddings/">Embedding Layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../layers/merge/">Merge Layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../layers/advanced-activations/">Advanced Activations Layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../layers/normalization/">Normalization Layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../layers/noise/">Noise layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../layers/wrappers/">Layer wrappers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../layers/writing-your-own-keras-layers/">Writing your own Keras layers</a>
                    </li>
                </ul>
                <p class="caption"><span class="caption-text">Preprocessing</span></p>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../preprocessing/sequence/">Sequence Preprocessing</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../preprocessing/text/">Text Preprocessing</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../preprocessing/image/">Image Preprocessing</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../losses/">Losses</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../metrics/">Metrics</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../optimizers/">Optimizers</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../activations/">Activations</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../callbacks/">Callbacks</a>
                    </li>
                </ul>
                <ul class="current">
                    <li class="toctree-l1 current"><a class="reference internal current" href="./">Datasets</a>
    <ul class="current">
    <li class="toctree-l2"><a class="reference internal" href="#cifar10-small-image-classification">CIFAR10 small image classification</a>
        <ul>
    <li class="toctree-l3"><a class="reference internal" href="#usage">Usage:</a>
    </li>
        </ul>
    </li>
    <li class="toctree-l2"><a class="reference internal" href="#cifar100-small-image-classification">CIFAR100 small image classification</a>
        <ul>
    <li class="toctree-l3"><a class="reference internal" href="#usage_1">Usage:</a>
    </li>
        </ul>
    </li>
    <li class="toctree-l2"><a class="reference internal" href="#imdb-movie-reviews-sentiment-classification">IMDB Movie reviews sentiment classification</a>
        <ul>
    <li class="toctree-l3"><a class="reference internal" href="#usage_2">Usage:</a>
    </li>
        </ul>
    </li>
    <li class="toctree-l2"><a class="reference internal" href="#reuters-newswire-topics-classification">Reuters newswire topics classification</a>
        <ul>
    <li class="toctree-l3"><a class="reference internal" href="#usage_3">Usage:</a>
    </li>
        </ul>
    </li>
    <li class="toctree-l2"><a class="reference internal" href="#mnist-database-of-handwritten-digits">MNIST database of handwritten digits</a>
        <ul>
    <li class="toctree-l3"><a class="reference internal" href="#usage_4">Usage:</a>
    </li>
        </ul>
    </li>
    <li class="toctree-l2"><a class="reference internal" href="#fashion-mnist-database-of-fashion-articles">Fashion-MNIST database of fashion articles</a>
        <ul>
    <li class="toctree-l3"><a class="reference internal" href="#usage_5">Usage:</a>
    </li>
        </ul>
    </li>
    <li class="toctree-l2"><a class="reference internal" href="#boston-housing-price-regression-dataset">Boston housing price regression dataset</a>
        <ul>
    <li class="toctree-l3"><a class="reference internal" href="#usage_6">Usage:</a>
    </li>
        </ul>
    </li>
    </ul>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../applications/">Applications</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../backend/">Backend</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../initializers/">Initializers</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../regularizers/">Regularizers</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../constraints/">Constraints</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../visualization/">Visualization</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../scikit-learn-api/">Scikit-learn API</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../utils/">Utils</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../contributing/">Contributing</a>
                    </li>
                </ul>
                <p class="caption"><span class="caption-text">Examples</span></p>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../examples/addition_rnn/">Addition RNN</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../examples/antirectifier/">Custom layer - antirectifier</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../examples/babi_rnn/">Baby RNN</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../examples/babi_memnn/">Baby MemNN</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../examples/cifar10_cnn/">CIFAR-10 CNN</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../examples/cifar10_resnet/">CIFAR-10 ResNet</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../examples/conv_filter_visualization/">Convolution filter visualization</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../examples/conv_lstm/">Convolutional LSTM</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../examples/deep_dream/">Deep Dream</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../examples/image_ocr/">Image OCR</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../examples/imdb_bidirectional_lstm/">Bidirectional LSTM</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../examples/imdb_cnn/">1D CNN for text classification</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../examples/imdb_cnn_lstm/">Sentiment classification CNN-LSTM</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../examples/imdb_fasttext/">Fasttext for text classification</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../examples/imdb_lstm/">Sentiment classification LSTM</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../examples/lstm_seq2seq/">Sequence to sequence - training</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../examples/lstm_seq2seq_restore/">Sequence to sequence - prediction</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../examples/lstm_stateful/">Stateful LSTM</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../examples/lstm_text_generation/">LSTM for text generation</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../examples/mnist_acgan/">Auxiliary Classifier GAN</a>
                    </li>
                </ul>
      </div>
    </div>
    </nav>

    <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">

      
      <nav class="wy-nav-top" role="navigation" aria-label="top navigation">
        <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
        <a href="..">Keras Documentation</a>
      </nav>

      
      <div class="wy-nav-content">
        <div class="rst-content">
          <div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
    <li><a href="..">Docs</a> &raquo;</li>
    
      
    
    <li>Datasets</li>
    <li class="wy-breadcrumbs-aside">
      
        <a href="https://github.com/keras-team/keras/tree/master/docs"
          class="icon icon-github"> Edit on GitHub</a>
      
    </li>
  </ul>
  
  <hr/>
</div>
          <div role="main">
            <div class="section">
              
                <h1 id="datasets">Datasets</h1>
<h2 id="cifar10-small-image-classification">CIFAR10 small image classification</h2>
<p>Dataset of 50,000 32x32 color training images, labeled over 10 categories, and 10,000 test images.</p>
<h3 id="usage">Usage:</h3>
<pre><code class="python">from keras.datasets import cifar10

(x_train, y_train), (x_test, y_test) = cifar10.load_data()
</code></pre>

<ul>
<li><strong>Returns:</strong><ul>
<li>2 tuples:<ul>
<li><strong>x_train, x_test</strong>: uint8 array of RGB image data with shape (num_samples, 3, 32, 32) or (num_samples, 32, 32, 3) based on the <code>image_data_format</code> backend setting of either <code>channels_first</code> or <code>channels_last</code> respectively.</li>
<li><strong>y_train, y_test</strong>: uint8 array of category labels (integers in range 0-9) with shape (num_samples, 1).</li>
</ul>
</li>
</ul>
</li>
</ul>
<hr />
<h2 id="cifar100-small-image-classification">CIFAR100 small image classification</h2>
<p>Dataset of 50,000 32x32 color training images, labeled over 100 categories, and 10,000 test images.</p>
<h3 id="usage_1">Usage:</h3>
<pre><code class="python">from keras.datasets import cifar100

(x_train, y_train), (x_test, y_test) = cifar100.load_data(label_mode='fine')
</code></pre>

<ul>
<li>
<p><strong>Returns:</strong></p>
<ul>
<li>2 tuples:<ul>
<li><strong>x_train, x_test</strong>: uint8 array of RGB image data with shape (num_samples, 3, 32, 32) or (num_samples, 32, 32, 3) based on the <code>image_data_format</code> backend setting of either <code>channels_first</code> or <code>channels_last</code> respectively.</li>
<li><strong>y_train, y_test</strong>: uint8 array of category labels with shape (num_samples, 1).</li>
</ul>
</li>
</ul>
</li>
<li>
<p><strong>Arguments:</strong></p>
<ul>
<li><strong>label_mode</strong>: "fine" or "coarse".</li>
</ul>
</li>
</ul>
<hr />
<h2 id="imdb-movie-reviews-sentiment-classification">IMDB Movie reviews sentiment classification</h2>
<p>Dataset of 25,000 movies reviews from IMDB, labeled by sentiment (positive/negative). Reviews have been preprocessed, and each review is encoded as a <a href="../preprocessing/sequence/">sequence</a> of word indexes (integers). For convenience, words are indexed by overall frequency in the dataset, so that for instance the integer "3" encodes the 3rd most frequent word in the data. This allows for quick filtering operations such as: "only consider the top 10,000 most common words, but eliminate the top 20 most common words".</p>
<p>As a convention, "0" does not stand for a specific word, but instead is used to encode any unknown word.</p>
<h3 id="usage_2">Usage:</h3>
<pre><code class="python">from keras.datasets import imdb

(x_train, y_train), (x_test, y_test) = imdb.load_data(path=&quot;imdb.npz&quot;,
                                                      num_words=None,
                                                      skip_top=0,
                                                      maxlen=None,
                                                      seed=113,
                                                      start_char=1,
                                                      oov_char=2,
                                                      index_from=3)
</code></pre>

<ul>
<li>
<p><strong>Returns:</strong></p>
<ul>
<li>2 tuples:<ul>
<li><strong>x_train, x_test</strong>: list of sequences, which are lists of indexes (integers). If the num_words argument was specific, the maximum possible index value is num_words-1. If the maxlen argument was specified, the largest possible sequence length is maxlen.</li>
<li><strong>y_train, y_test</strong>: list of integer labels (1 or 0). </li>
</ul>
</li>
</ul>
</li>
<li>
<p><strong>Arguments:</strong></p>
<ul>
<li><strong>path</strong>: if you do not have the data locally (at <code>'~/.keras/datasets/' + path</code>), it will be downloaded to this location.</li>
<li><strong>num_words</strong>: integer or None. Top most frequent words to consider. Any less frequent word will appear as <code>oov_char</code> value in the sequence data.</li>
<li><strong>skip_top</strong>: integer. Top most frequent words to ignore (they will appear as <code>oov_char</code> value in the sequence data).</li>
<li><strong>maxlen</strong>: int. Maximum sequence length. Any longer sequence will be truncated.</li>
<li><strong>seed</strong>: int. Seed for reproducible data shuffling.</li>
<li><strong>start_char</strong>: int. The start of a sequence will be marked with this character.
    Set to 1 because 0 is usually the padding character.</li>
<li><strong>oov_char</strong>: int. words that were cut out because of the <code>num_words</code>
    or <code>skip_top</code> limit will be replaced with this character.</li>
<li><strong>index_from</strong>: int. Index actual words with this index and higher.</li>
</ul>
</li>
</ul>
<hr />
<h2 id="reuters-newswire-topics-classification">Reuters newswire topics classification</h2>
<p>Dataset of 11,228 newswires from Reuters, labeled over 46 topics. As with the IMDB dataset, each wire is encoded as a sequence of word indexes (same conventions).</p>
<h3 id="usage_3">Usage:</h3>
<pre><code class="python">from keras.datasets import reuters

(x_train, y_train), (x_test, y_test) = reuters.load_data(path=&quot;reuters.npz&quot;,
                                                         num_words=None,
                                                         skip_top=0,
                                                         maxlen=None,
                                                         test_split=0.2,
                                                         seed=113,
                                                         start_char=1,
                                                         oov_char=2,
                                                         index_from=3)
</code></pre>

<p>The specifications are the same as that of the IMDB dataset, with the addition of:</p>
<ul>
<li><strong>test_split</strong>: float. Fraction of the dataset to be used as test data.</li>
</ul>
<p>This dataset also makes available the word index used for encoding the sequences:</p>
<pre><code class="python">word_index = reuters.get_word_index(path=&quot;reuters_word_index.json&quot;)
</code></pre>

<ul>
<li>
<p><strong>Returns:</strong> A dictionary where key are words (str) and values are indexes (integer). eg. <code>word_index["giraffe"]</code> might return <code>1234</code>. </p>
</li>
<li>
<p><strong>Arguments:</strong></p>
<ul>
<li><strong>path</strong>: if you do not have the index file locally (at <code>'~/.keras/datasets/' + path</code>), it will be downloaded to this location.</li>
</ul>
</li>
</ul>
<hr />
<h2 id="mnist-database-of-handwritten-digits">MNIST database of handwritten digits</h2>
<p>Dataset of 60,000 28x28 grayscale images of the 10 digits, along with a test set of 10,000 images.</p>
<h3 id="usage_4">Usage:</h3>
<pre><code class="python">from keras.datasets import mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()
</code></pre>

<ul>
<li>
<p><strong>Returns:</strong></p>
<ul>
<li>2 tuples:<ul>
<li><strong>x_train, x_test</strong>: uint8 array of grayscale image data with shape (num_samples, 28, 28).</li>
<li><strong>y_train, y_test</strong>: uint8 array of digit labels (integers in range 0-9) with shape (num_samples,).</li>
</ul>
</li>
</ul>
</li>
<li>
<p><strong>Arguments:</strong></p>
<ul>
<li><strong>path</strong>: if you do not have the index file locally (at <code>'~/.keras/datasets/' + path</code>), it will be downloaded to this location.</li>
</ul>
</li>
</ul>
<hr />
<h2 id="fashion-mnist-database-of-fashion-articles">Fashion-MNIST database of fashion articles</h2>
<p>Dataset of 60,000 28x28 grayscale images of 10 fashion categories, along with a test set of 10,000 images. This dataset can be used as a drop-in replacement for MNIST. The class labels are:</p>
<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>T-shirt/top</td>
</tr>
<tr>
<td>1</td>
<td>Trouser</td>
</tr>
<tr>
<td>2</td>
<td>Pullover</td>
</tr>
<tr>
<td>3</td>
<td>Dress</td>
</tr>
<tr>
<td>4</td>
<td>Coat</td>
</tr>
<tr>
<td>5</td>
<td>Sandal</td>
</tr>
<tr>
<td>6</td>
<td>Shirt</td>
</tr>
<tr>
<td>7</td>
<td>Sneaker</td>
</tr>
<tr>
<td>8</td>
<td>Bag</td>
</tr>
<tr>
<td>9</td>
<td>Ankle boot</td>
</tr>
</tbody>
</table>
<h3 id="usage_5">Usage:</h3>
<pre><code class="python">from keras.datasets import fashion_mnist

(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()
</code></pre>

<ul>
<li><strong>Returns:</strong><ul>
<li>2 tuples:<ul>
<li><strong>x_train, x_test</strong>: uint8 array of grayscale image data with shape (num_samples, 28, 28).</li>
<li><strong>y_train, y_test</strong>: uint8 array of labels (integers in range 0-9) with shape (num_samples,).</li>
</ul>
</li>
</ul>
</li>
</ul>
<hr />
<h2 id="boston-housing-price-regression-dataset">Boston housing price regression dataset</h2>
<p>Dataset taken from the StatLib library which is maintained at Carnegie Mellon University. </p>
<p>Samples contain 13 attributes of houses at different locations around the Boston suburbs in the late 1970s.
Targets are the median values of the houses at a location (in k$).</p>
<h3 id="usage_6">Usage:</h3>
<pre><code class="python">from keras.datasets import boston_housing

(x_train, y_train), (x_test, y_test) = boston_housing.load_data()
</code></pre>

<ul>
<li>
<p><strong>Arguments:</strong></p>
<ul>
<li><strong>path</strong>: path where to cache the dataset locally
    (relative to ~/.keras/datasets).</li>
<li><strong>seed</strong>: Random seed for shuffling the data
    before computing the test split.</li>
<li><strong>test_split</strong>: fraction of the data to reserve as test set.</li>
</ul>
</li>
<li>
<p><strong>Returns:</strong>
    Tuple of Numpy arrays: <code>(x_train, y_train), (x_test, y_test)</code>.</p>
</li>
</ul>
              
            </div>
          </div>
          <footer>
  
    <div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
      
        <a href="../applications/" class="btn btn-neutral float-right" title="Applications">Next <span class="icon icon-circle-arrow-right"></span></a>
      
      
        <a href="../callbacks/" class="btn btn-neutral" title="Callbacks"><span class="icon icon-circle-arrow-left"></span> Previous</a>
      
    </div>
  

  <hr/>

  <div role="contentinfo">
    <!-- Copyright etc -->
    
  </div>

  Built with <a href="https://www.mkdocs.org/">MkDocs</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
      
        </div>
      </div>

    </section>

  </div>

  <div class="rst-versions" role="note" aria-label="versions">
    <span class="rst-current-version" data-toggle="rst-current-version">
      
          <a href="http://github.com/keras-team/keras/" class="fa fa-github" style="float: left; color: #fcfcfc"> GitHub</a>
      
      
        <span><a href="../callbacks/" style="color: #fcfcfc;">&laquo; Previous</a></span>
      
      
        <span style="margin-left: 15px"><a href="../applications/" style="color: #fcfcfc">Next &raquo;</a></span>
      
    </span>
</div>
    <script>var base_url = '..';</script>
    <script src="../js/theme.js" defer></script>
      <script src="../search/main.js" defer></script>
    <script type="text/javascript" defer>
        window.onload = function () {
            SphinxRtdTheme.Navigation.enable(true);
        };
    </script>

</body>
</html>