File: index.html

package info (click to toggle)
keras 2.3.1%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 9,288 kB
  • sloc: python: 48,266; javascript: 1,794; xml: 297; makefile: 36; sh: 30
file content (649 lines) | stat: -rw-r--r-- 25,017 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  <meta http-equiv="X-UA-Compatible" content="IE=edge">
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  
  <link rel="canonical" href="http://keras.io/examples/babi_rnn/">
  <link rel="shortcut icon" href="../../img/favicon.ico">
  <title>Baby RNN - Keras Documentation</title>
  <link href='https://fonts.googleapis.com/css?family=Lato:400,700|Source+Sans+Pro:400,700|Inconsolata:400,700' rel='stylesheet' type='text/css'>

  <link rel="stylesheet" href="../../css/theme.css" type="text/css" />
  <link rel="stylesheet" href="../../css/theme_extra.css" type="text/css" />
  <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/styles/github.min.css">
  
  <script>
    // Current page data
    var mkdocs_page_name = "Baby RNN";
    var mkdocs_page_input_path = "examples/babi_rnn.md";
    var mkdocs_page_url = "/examples/babi_rnn/";
  </script>
  
  <script src="../../js/jquery-2.1.1.min.js" defer></script>
  <script src="../../js/modernizr-2.8.3.min.js" defer></script>
  <script src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/highlight.min.js"></script>
  <script>hljs.initHighlightingOnLoad();</script> 
  
  <script>
      (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
      (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
      m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
      })(window,document,'script','https://www.google-analytics.com/analytics.js','ga');

      ga('create', 'UA-61785484-1', 'keras.io');
      ga('send', 'pageview');
  </script>
  
</head>

<body class="wy-body-for-nav" role="document">

  <div class="wy-grid-for-nav">

    
    <nav data-toggle="wy-nav-shift" class="wy-nav-side stickynav">
    <div class="wy-side-scroll">
      <a href="">
        <div class="keras-logo">
          <img src="/img/keras-logo-small.jpg" class="keras-logo-img">
          Keras Documentation
        </div>
      </a>

      <div class="wy-side-nav-search">
        <div role="search">
  <form id ="rtd-search-form" class="wy-form" action="../../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" title="Type search term here" />
  </form>
</div>
      </div>

      <div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../..">Home</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../../why-use-keras/">Why use Keras</a>
                    </li>
                </ul>
                <p class="caption"><span class="caption-text">Getting started</span></p>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../../getting-started/sequential-model-guide/">Guide to the Sequential model</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../../getting-started/functional-api-guide/">Guide to the Functional API</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../../getting-started/faq/">FAQ</a>
                    </li>
                </ul>
                <p class="caption"><span class="caption-text">Models</span></p>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../../models/about-keras-models/">About Keras models</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../../models/sequential/">Sequential</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../../models/model/">Model (functional API)</a>
                    </li>
                </ul>
                <p class="caption"><span class="caption-text">Layers</span></p>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../../layers/about-keras-layers/">About Keras layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../../layers/core/">Core Layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../../layers/convolutional/">Convolutional Layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../../layers/pooling/">Pooling Layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../../layers/local/">Locally-connected Layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../../layers/recurrent/">Recurrent Layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../../layers/embeddings/">Embedding Layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../../layers/merge/">Merge Layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../../layers/advanced-activations/">Advanced Activations Layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../../layers/normalization/">Normalization Layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../../layers/noise/">Noise layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../../layers/wrappers/">Layer wrappers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../../layers/writing-your-own-keras-layers/">Writing your own Keras layers</a>
                    </li>
                </ul>
                <p class="caption"><span class="caption-text">Preprocessing</span></p>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../../preprocessing/sequence/">Sequence Preprocessing</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../../preprocessing/text/">Text Preprocessing</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../../preprocessing/image/">Image Preprocessing</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../../losses/">Losses</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../../metrics/">Metrics</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../../optimizers/">Optimizers</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../../activations/">Activations</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../../callbacks/">Callbacks</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../../datasets/">Datasets</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../../applications/">Applications</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../../backend/">Backend</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../../initializers/">Initializers</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../../regularizers/">Regularizers</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../../constraints/">Constraints</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../../visualization/">Visualization</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../../scikit-learn-api/">Scikit-learn API</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../../utils/">Utils</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../../contributing/">Contributing</a>
                    </li>
                </ul>
                <p class="caption"><span class="caption-text">Examples</span></p>
                <ul class="current">
                    <li class="toctree-l1"><a class="reference internal" href="../addition_rnn/">Addition RNN</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../antirectifier/">Custom layer - antirectifier</a>
                    </li>
                    <li class="toctree-l1 current"><a class="reference internal current" href="./">Baby RNN</a>
    <ul class="current">
    <li class="toctree-l2"><a class="reference internal" href="#notes">Notes</a>
    </li>
    </ul>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../babi_memnn/">Baby MemNN</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../cifar10_cnn/">CIFAR-10 CNN</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../cifar10_resnet/">CIFAR-10 ResNet</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../conv_filter_visualization/">Convolution filter visualization</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../conv_lstm/">Convolutional LSTM</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../deep_dream/">Deep Dream</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../image_ocr/">Image OCR</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../imdb_bidirectional_lstm/">Bidirectional LSTM</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../imdb_cnn/">1D CNN for text classification</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../imdb_cnn_lstm/">Sentiment classification CNN-LSTM</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../imdb_fasttext/">Fasttext for text classification</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../imdb_lstm/">Sentiment classification LSTM</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../lstm_seq2seq/">Sequence to sequence - training</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../lstm_seq2seq_restore/">Sequence to sequence - prediction</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../lstm_stateful/">Stateful LSTM</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../lstm_text_generation/">LSTM for text generation</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../mnist_acgan/">Auxiliary Classifier GAN</a>
                    </li>
                </ul>
      </div>
    </div>
    </nav>

    <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">

      
      <nav class="wy-nav-top" role="navigation" aria-label="top navigation">
        <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
        <a href="../..">Keras Documentation</a>
      </nav>

      
      <div class="wy-nav-content">
        <div class="rst-content">
          <div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
    <li><a href="../..">Docs</a> &raquo;</li>
    
      
        
          <li>Examples &raquo;</li>
        
      
    
    <li>Baby RNN</li>
    <li class="wy-breadcrumbs-aside">
      
        <a href="https://github.com/keras-team/keras/tree/master/docs"
          class="icon icon-github"> Edit on GitHub</a>
      
    </li>
  </ul>
  
  <hr/>
</div>
          <div role="main">
            <div class="section">
              
                <h1 id="trains-two-recurrent-neural-networks-based-upon-a-story-and-a-question">Trains two recurrent neural networks based upon a story and a question.</h1>
<p>The resulting merged vector is then queried to answer a range of bAbI tasks.</p>
<p>The results are comparable to those for an LSTM model provided in Weston et al.:
"Towards AI-Complete Question Answering: A Set of Prerequisite Toy Tasks"
http://arxiv.org/abs/1502.05698</p>
<table>
<thead>
<tr>
<th>Task Number</th>
<th>FB LSTM Baseline</th>
<th>Keras QA</th>
</tr>
</thead>
<tbody>
<tr>
<td>QA1 - Single Supporting Fact</td>
<td>50</td>
<td>52.1</td>
</tr>
<tr>
<td>QA2 - Two Supporting Facts</td>
<td>20</td>
<td>37.0</td>
</tr>
<tr>
<td>QA3 - Three Supporting Facts</td>
<td>20</td>
<td>20.5</td>
</tr>
<tr>
<td>QA4 - Two Arg. Relations</td>
<td>61</td>
<td>62.9</td>
</tr>
<tr>
<td>QA5 - Three Arg. Relations</td>
<td>70</td>
<td>61.9</td>
</tr>
<tr>
<td>QA6 - yes/No Questions</td>
<td>48</td>
<td>50.7</td>
</tr>
<tr>
<td>QA7 - Counting</td>
<td>49</td>
<td>78.9</td>
</tr>
<tr>
<td>QA8 - Lists/Sets</td>
<td>45</td>
<td>77.2</td>
</tr>
<tr>
<td>QA9 - Simple Negation</td>
<td>64</td>
<td>64.0</td>
</tr>
<tr>
<td>QA10 - Indefinite Knowledge</td>
<td>44</td>
<td>47.7</td>
</tr>
<tr>
<td>QA11 - Basic Coreference</td>
<td>72</td>
<td>74.9</td>
</tr>
<tr>
<td>QA12 - Conjunction</td>
<td>74</td>
<td>76.4</td>
</tr>
<tr>
<td>QA13 - Compound Coreference</td>
<td>94</td>
<td>94.4</td>
</tr>
<tr>
<td>QA14 - Time Reasoning</td>
<td>27</td>
<td>34.8</td>
</tr>
<tr>
<td>QA15 - Basic Deduction</td>
<td>21</td>
<td>32.4</td>
</tr>
<tr>
<td>QA16 - Basic Induction</td>
<td>23</td>
<td>50.6</td>
</tr>
<tr>
<td>QA17 - Positional Reasoning</td>
<td>51</td>
<td>49.1</td>
</tr>
<tr>
<td>QA18 - Size Reasoning</td>
<td>52</td>
<td>90.8</td>
</tr>
<tr>
<td>QA19 - Path Finding</td>
<td>8</td>
<td>9.0</td>
</tr>
<tr>
<td>QA20 - Agent's Motivations</td>
<td>91</td>
<td>90.7</td>
</tr>
</tbody>
</table>
<p>For the resources related to the bAbI project, refer to:
https://research.facebook.com/researchers/1543934539189348</p>
<h3 id="notes">Notes</h3>
<ul>
<li>With default word, sentence, and query vector sizes, the GRU model achieves:</li>
<li>52.1% test accuracy on QA1 in 20 epochs (2 seconds per epoch on CPU)</li>
<li>
<p>37.0% test accuracy on QA2 in 20 epochs (16 seconds per epoch on CPU)
In comparison, the Facebook paper achieves 50% and 20% for the LSTM baseline.</p>
</li>
<li>
<p>The task does not traditionally parse the question separately. This likely
improves accuracy and is a good example of merging two RNNs.</p>
</li>
<li>
<p>The word vector embeddings are not shared between the story and question RNNs.</p>
</li>
<li>
<p>See how the accuracy changes given 10,000 training samples (en-10k) instead
of only 1000. 1000 was used in order to be comparable to the original paper.</p>
</li>
<li>
<p>Experiment with GRU, LSTM, and JZS1-3 as they give subtly different results.</p>
</li>
<li>
<p>The length and noise (i.e. 'useless' story components) impact the ability of
LSTMs / GRUs to provide the correct answer. Given only the supporting facts,
these RNNs can achieve 100% accuracy on many tasks. Memory networks and neural
networks that use attentional processes can efficiently search through this
noise to find the relevant statements, improving performance substantially.
This becomes especially obvious on QA2 and QA3, both far longer than QA1.</p>
</li>
</ul>
<pre><code class="python">from __future__ import print_function
from functools import reduce
import re
import tarfile

import numpy as np

from keras.utils.data_utils import get_file
from keras.layers.embeddings import Embedding
from keras import layers
from keras.layers import recurrent
from keras.models import Model
from keras.preprocessing.sequence import pad_sequences


def tokenize(sent):
    '''Return the tokens of a sentence including punctuation.

    &gt;&gt;&gt; tokenize('Bob dropped the apple. Where is the apple?')
    ['Bob', 'dropped', 'the', 'apple', '.', 'Where', 'is', 'the', 'apple', '?']
    '''
    return [x.strip() for x in re.split(r'(\W+)', sent) if x.strip()]


def parse_stories(lines, only_supporting=False):
    '''Parse stories provided in the bAbi tasks format

    If only_supporting is true,
    only the sentences that support the answer are kept.
    '''
    data = []
    story = []
    for line in lines:
        line = line.decode('utf-8').strip()
        nid, line = line.split(' ', 1)
        nid = int(nid)
        if nid == 1:
            story = []
        if '\t' in line:
            q, a, supporting = line.split('\t')
            q = tokenize(q)
            if only_supporting:
                # Only select the related substory
                supporting = map(int, supporting.split())
                substory = [story[i - 1] for i in supporting]
            else:
                # Provide all the substories
                substory = [x for x in story if x]
            data.append((substory, q, a))
            story.append('')
        else:
            sent = tokenize(line)
            story.append(sent)
    return data


def get_stories(f, only_supporting=False, max_length=None):
    '''Given a file name, read the file, retrieve the stories,
    and then convert the sentences into a single story.

    If max_length is supplied,
    any stories longer than max_length tokens will be discarded.
    '''
    data = parse_stories(f.readlines(), only_supporting=only_supporting)
    flatten = lambda data: reduce(lambda x, y: x + y, data)
    data = [(flatten(story), q, answer) for story, q, answer in data
            if not max_length or len(flatten(story)) &lt; max_length]
    return data


def vectorize_stories(data, word_idx, story_maxlen, query_maxlen):
    xs = []
    xqs = []
    ys = []
    for story, query, answer in data:
        x = [word_idx[w] for w in story]
        xq = [word_idx[w] for w in query]
        # let's not forget that index 0 is reserved
        y = np.zeros(len(word_idx) + 1)
        y[word_idx[answer]] = 1
        xs.append(x)
        xqs.append(xq)
        ys.append(y)
    return (pad_sequences(xs, maxlen=story_maxlen),
            pad_sequences(xqs, maxlen=query_maxlen), np.array(ys))

RNN = recurrent.LSTM
EMBED_HIDDEN_SIZE = 50
SENT_HIDDEN_SIZE = 100
QUERY_HIDDEN_SIZE = 100
BATCH_SIZE = 32
EPOCHS = 20
print('RNN / Embed / Sent / Query = {}, {}, {}, {}'.format(RNN,
                                                           EMBED_HIDDEN_SIZE,
                                                           SENT_HIDDEN_SIZE,
                                                           QUERY_HIDDEN_SIZE))

try:
    path = get_file('babi-tasks-v1-2.tar.gz',
                    origin='https://s3.amazonaws.com/text-datasets/'
                           'babi_tasks_1-20_v1-2.tar.gz')
except:
    print('Error downloading dataset, please download it manually:\n'
          '$ wget http://www.thespermwhale.com/jaseweston/babi/tasks_1-20_v1-2'
          '.tar.gz\n'
          '$ mv tasks_1-20_v1-2.tar.gz ~/.keras/datasets/babi-tasks-v1-2.tar.gz')
    raise

# Default QA1 with 1000 samples
# challenge = 'tasks_1-20_v1-2/en/qa1_single-supporting-fact_{}.txt'
# QA1 with 10,000 samples
# challenge = 'tasks_1-20_v1-2/en-10k/qa1_single-supporting-fact_{}.txt'
# QA2 with 1000 samples
challenge = 'tasks_1-20_v1-2/en/qa2_two-supporting-facts_{}.txt'
# QA2 with 10,000 samples
# challenge = 'tasks_1-20_v1-2/en-10k/qa2_two-supporting-facts_{}.txt'
with tarfile.open(path) as tar:
    train = get_stories(tar.extractfile(challenge.format('train')))
    test = get_stories(tar.extractfile(challenge.format('test')))

vocab = set()
for story, q, answer in train + test:
    vocab |= set(story + q + [answer])
vocab = sorted(vocab)

# Reserve 0 for masking via pad_sequences
vocab_size = len(vocab) + 1
word_idx = dict((c, i + 1) for i, c in enumerate(vocab))
story_maxlen = max(map(len, (x for x, _, _ in train + test)))
query_maxlen = max(map(len, (x for _, x, _ in train + test)))

x, xq, y = vectorize_stories(train, word_idx, story_maxlen, query_maxlen)
tx, txq, ty = vectorize_stories(test, word_idx, story_maxlen, query_maxlen)

print('vocab = {}'.format(vocab))
print('x.shape = {}'.format(x.shape))
print('xq.shape = {}'.format(xq.shape))
print('y.shape = {}'.format(y.shape))
print('story_maxlen, query_maxlen = {}, {}'.format(story_maxlen, query_maxlen))

print('Build model...')

sentence = layers.Input(shape=(story_maxlen,), dtype='int32')
encoded_sentence = layers.Embedding(vocab_size, EMBED_HIDDEN_SIZE)(sentence)
encoded_sentence = RNN(SENT_HIDDEN_SIZE)(encoded_sentence)

question = layers.Input(shape=(query_maxlen,), dtype='int32')
encoded_question = layers.Embedding(vocab_size, EMBED_HIDDEN_SIZE)(question)
encoded_question = RNN(QUERY_HIDDEN_SIZE)(encoded_question)

merged = layers.concatenate([encoded_sentence, encoded_question])
preds = layers.Dense(vocab_size, activation='softmax')(merged)

model = Model([sentence, question], preds)
model.compile(optimizer='adam',
              loss='categorical_crossentropy',
              metrics=['accuracy'])

print('Training')
model.fit([x, xq], y,
          batch_size=BATCH_SIZE,
          epochs=EPOCHS,
          validation_split=0.05)

print('Evaluation')
loss, acc = model.evaluate([tx, txq], ty,
                           batch_size=BATCH_SIZE)
print('Test loss / test accuracy = {:.4f} / {:.4f}'.format(loss, acc))
</code></pre>
              
            </div>
          </div>
          <footer>
  
    <div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
      
        <a href="../babi_memnn/" class="btn btn-neutral float-right" title="Baby MemNN">Next <span class="icon icon-circle-arrow-right"></span></a>
      
      
        <a href="../antirectifier/" class="btn btn-neutral" title="Custom layer - antirectifier"><span class="icon icon-circle-arrow-left"></span> Previous</a>
      
    </div>
  

  <hr/>

  <div role="contentinfo">
    <!-- Copyright etc -->
    
  </div>

  Built with <a href="https://www.mkdocs.org/">MkDocs</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
      
        </div>
      </div>

    </section>

  </div>

  <div class="rst-versions" role="note" aria-label="versions">
    <span class="rst-current-version" data-toggle="rst-current-version">
      
          <a href="http://github.com/keras-team/keras/" class="fa fa-github" style="float: left; color: #fcfcfc"> GitHub</a>
      
      
        <span><a href="../antirectifier/" style="color: #fcfcfc;">&laquo; Previous</a></span>
      
      
        <span style="margin-left: 15px"><a href="../babi_memnn/" style="color: #fcfcfc">Next &raquo;</a></span>
      
    </span>
</div>
    <script>var base_url = '../..';</script>
    <script src="../../js/theme.js" defer></script>
      <script src="../../search/main.js" defer></script>
    <script type="text/javascript" defer>
        window.onload = function () {
            SphinxRtdTheme.Navigation.enable(true);
        };
    </script>

</body>
</html>