1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
|
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<link rel="canonical" href="http://keras.io/examples/deep_dream/">
<link rel="shortcut icon" href="../../img/favicon.ico">
<title>Deep Dream - Keras Documentation</title>
<link href='https://fonts.googleapis.com/css?family=Lato:400,700|Source+Sans+Pro:400,700|Inconsolata:400,700' rel='stylesheet' type='text/css'>
<link rel="stylesheet" href="../../css/theme.css" type="text/css" />
<link rel="stylesheet" href="../../css/theme_extra.css" type="text/css" />
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/styles/github.min.css">
<script>
// Current page data
var mkdocs_page_name = "Deep Dream";
var mkdocs_page_input_path = "examples/deep_dream.md";
var mkdocs_page_url = "/examples/deep_dream/";
</script>
<script src="../../js/jquery-2.1.1.min.js" defer></script>
<script src="../../js/modernizr-2.8.3.min.js" defer></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/highlight.min.js"></script>
<script>hljs.initHighlightingOnLoad();</script>
<script>
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
})(window,document,'script','https://www.google-analytics.com/analytics.js','ga');
ga('create', 'UA-61785484-1', 'keras.io');
ga('send', 'pageview');
</script>
</head>
<body class="wy-body-for-nav" role="document">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side stickynav">
<div class="wy-side-scroll">
<a href="">
<div class="keras-logo">
<img src="/img/keras-logo-small.jpg" class="keras-logo-img">
Keras Documentation
</div>
</a>
<div class="wy-side-nav-search">
<div role="search">
<form id ="rtd-search-form" class="wy-form" action="../../search.html" method="get">
<input type="text" name="q" placeholder="Search docs" title="Type search term here" />
</form>
</div>
</div>
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<ul>
<li class="toctree-l1"><a class="reference internal" href="../..">Home</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../why-use-keras/">Why use Keras</a>
</li>
</ul>
<p class="caption"><span class="caption-text">Getting started</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../getting-started/sequential-model-guide/">Guide to the Sequential model</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../getting-started/functional-api-guide/">Guide to the Functional API</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../getting-started/faq/">FAQ</a>
</li>
</ul>
<p class="caption"><span class="caption-text">Models</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../models/about-keras-models/">About Keras models</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../models/sequential/">Sequential</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../models/model/">Model (functional API)</a>
</li>
</ul>
<p class="caption"><span class="caption-text">Layers</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../layers/about-keras-layers/">About Keras layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../layers/core/">Core Layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../layers/convolutional/">Convolutional Layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../layers/pooling/">Pooling Layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../layers/local/">Locally-connected Layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../layers/recurrent/">Recurrent Layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../layers/embeddings/">Embedding Layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../layers/merge/">Merge Layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../layers/advanced-activations/">Advanced Activations Layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../layers/normalization/">Normalization Layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../layers/noise/">Noise layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../layers/wrappers/">Layer wrappers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../layers/writing-your-own-keras-layers/">Writing your own Keras layers</a>
</li>
</ul>
<p class="caption"><span class="caption-text">Preprocessing</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../preprocessing/sequence/">Sequence Preprocessing</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../preprocessing/text/">Text Preprocessing</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../preprocessing/image/">Image Preprocessing</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../losses/">Losses</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../metrics/">Metrics</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../optimizers/">Optimizers</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../activations/">Activations</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../callbacks/">Callbacks</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../datasets/">Datasets</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../applications/">Applications</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../backend/">Backend</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../initializers/">Initializers</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../regularizers/">Regularizers</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../constraints/">Constraints</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../visualization/">Visualization</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../scikit-learn-api/">Scikit-learn API</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../utils/">Utils</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../contributing/">Contributing</a>
</li>
</ul>
<p class="caption"><span class="caption-text">Examples</span></p>
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="../addition_rnn/">Addition RNN</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../antirectifier/">Custom layer - antirectifier</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../babi_rnn/">Baby RNN</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../babi_memnn/">Baby MemNN</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../cifar10_cnn/">CIFAR-10 CNN</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../cifar10_resnet/">CIFAR-10 ResNet</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../conv_filter_visualization/">Convolution filter visualization</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../conv_lstm/">Convolutional LSTM</a>
</li>
<li class="toctree-l1 current"><a class="reference internal current" href="./">Deep Dream</a>
<ul class="current">
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../image_ocr/">Image OCR</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../imdb_bidirectional_lstm/">Bidirectional LSTM</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../imdb_cnn/">1D CNN for text classification</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../imdb_cnn_lstm/">Sentiment classification CNN-LSTM</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../imdb_fasttext/">Fasttext for text classification</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../imdb_lstm/">Sentiment classification LSTM</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../lstm_seq2seq/">Sequence to sequence - training</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../lstm_seq2seq_restore/">Sequence to sequence - prediction</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../lstm_stateful/">Stateful LSTM</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../lstm_text_generation/">LSTM for text generation</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../mnist_acgan/">Auxiliary Classifier GAN</a>
</li>
</ul>
</div>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
<nav class="wy-nav-top" role="navigation" aria-label="top navigation">
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="../..">Keras Documentation</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="../..">Docs</a> »</li>
<li>Examples »</li>
<li>Deep Dream</li>
<li class="wy-breadcrumbs-aside">
<a href="https://github.com/keras-team/keras/tree/master/docs"
class="icon icon-github"> Edit on GitHub</a>
</li>
</ul>
<hr/>
</div>
<div role="main">
<div class="section">
<h1 id="deep-dreaming-in-keras">Deep Dreaming in Keras.</h1>
<p>Run the script with:</p>
<pre><code class="python">python deep_dream.py path_to_your_base_image.jpg prefix_for_results
</code></pre>
<p>e.g.:</p>
<pre><code class="python">python deep_dream.py img/mypic.jpg results/dream
</code></pre>
<pre><code class="python">from __future__ import print_function
from keras.preprocessing.image import load_img, save_img, img_to_array
import numpy as np
import scipy
import argparse
from keras.applications import inception_v3
from keras import backend as K
parser = argparse.ArgumentParser(description='Deep Dreams with Keras.')
parser.add_argument('base_image_path', metavar='base', type=str,
help='Path to the image to transform.')
parser.add_argument('result_prefix', metavar='res_prefix', type=str,
help='Prefix for the saved results.')
args = parser.parse_args()
base_image_path = args.base_image_path
result_prefix = args.result_prefix
# These are the names of the layers
# for which we try to maximize activation,
# as well as their weight in the final loss
# we try to maximize.
# You can tweak these setting to obtain new visual effects.
settings = {
'features': {
'mixed2': 0.2,
'mixed3': 0.5,
'mixed4': 2.,
'mixed5': 1.5,
},
}
def preprocess_image(image_path):
# Util function to open, resize and format pictures
# into appropriate tensors.
img = load_img(image_path)
img = img_to_array(img)
img = np.expand_dims(img, axis=0)
img = inception_v3.preprocess_input(img)
return img
def deprocess_image(x):
# Util function to convert a tensor into a valid image.
if K.image_data_format() == 'channels_first':
x = x.reshape((3, x.shape[2], x.shape[3]))
x = x.transpose((1, 2, 0))
else:
x = x.reshape((x.shape[1], x.shape[2], 3))
x /= 2.
x += 0.5
x *= 255.
x = np.clip(x, 0, 255).astype('uint8')
return x
K.set_learning_phase(0)
# Build the InceptionV3 network with our placeholder.
# The model will be loaded with pre-trained ImageNet weights.
model = inception_v3.InceptionV3(weights='imagenet',
include_top=False)
dream = model.input
print('Model loaded.')
# Get the symbolic outputs of each "key" layer (we gave them unique names).
layer_dict = dict([(layer.name, layer) for layer in model.layers])
# Define the loss.
loss = K.variable(0.)
for layer_name in settings['features']:
# Add the L2 norm of the features of a layer to the loss.
if layer_name not in layer_dict:
raise ValueError('Layer ' + layer_name + ' not found in model.')
coeff = settings['features'][layer_name]
x = layer_dict[layer_name].output
# We avoid border artifacts by only involving non-border pixels in the loss.
scaling = K.prod(K.cast(K.shape(x), 'float32'))
if K.image_data_format() == 'channels_first':
loss = loss + coeff * K.sum(K.square(x[:, :, 2: -2, 2: -2])) / scaling
else:
loss = loss + coeff * K.sum(K.square(x[:, 2: -2, 2: -2, :])) / scaling
# Compute the gradients of the dream wrt the loss.
grads = K.gradients(loss, dream)[0]
# Normalize gradients.
grads /= K.maximum(K.mean(K.abs(grads)), K.epsilon())
# Set up function to retrieve the value
# of the loss and gradients given an input image.
outputs = [loss, grads]
fetch_loss_and_grads = K.function([dream], outputs)
def eval_loss_and_grads(x):
outs = fetch_loss_and_grads([x])
loss_value = outs[0]
grad_values = outs[1]
return loss_value, grad_values
def resize_img(img, size):
img = np.copy(img)
if K.image_data_format() == 'channels_first':
factors = (1, 1,
float(size[0]) / img.shape[2],
float(size[1]) / img.shape[3])
else:
factors = (1,
float(size[0]) / img.shape[1],
float(size[1]) / img.shape[2],
1)
return scipy.ndimage.zoom(img, factors, order=1)
def gradient_ascent(x, iterations, step, max_loss=None):
for i in range(iterations):
loss_value, grad_values = eval_loss_and_grads(x)
if max_loss is not None and loss_value > max_loss:
break
print('..Loss value at', i, ':', loss_value)
x += step * grad_values
return x
"""Process:
- Load the original image.
- Define a number of processing scales (i.e. image shapes),
from smallest to largest.
- Resize the original image to the smallest scale.
- For every scale, starting with the smallest (i.e. current one):
- Run gradient ascent
- Upscale image to the next scale
- Reinject the detail that was lost at upscaling time
- Stop when we are back to the original size.
To obtain the detail lost during upscaling, we simply
take the original image, shrink it down, upscale it,
and compare the result to the (resized) original image.
"""
# Playing with these hyperparameters will also allow you to achieve new effects
step = 0.01 # Gradient ascent step size
num_octave = 3 # Number of scales at which to run gradient ascent
octave_scale = 1.4 # Size ratio between scales
iterations = 20 # Number of ascent steps per scale
max_loss = 10.
img = preprocess_image(base_image_path)
if K.image_data_format() == 'channels_first':
original_shape = img.shape[2:]
else:
original_shape = img.shape[1:3]
successive_shapes = [original_shape]
for i in range(1, num_octave):
shape = tuple([int(dim / (octave_scale ** i)) for dim in original_shape])
successive_shapes.append(shape)
successive_shapes = successive_shapes[::-1]
original_img = np.copy(img)
shrunk_original_img = resize_img(img, successive_shapes[0])
for shape in successive_shapes:
print('Processing image shape', shape)
img = resize_img(img, shape)
img = gradient_ascent(img,
iterations=iterations,
step=step,
max_loss=max_loss)
upscaled_shrunk_original_img = resize_img(shrunk_original_img, shape)
same_size_original = resize_img(original_img, shape)
lost_detail = same_size_original - upscaled_shrunk_original_img
img += lost_detail
shrunk_original_img = resize_img(original_img, shape)
save_img(result_prefix + '.png', deprocess_image(np.copy(img)))
</code></pre>
</div>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="../image_ocr/" class="btn btn-neutral float-right" title="Image OCR">Next <span class="icon icon-circle-arrow-right"></span></a>
<a href="../conv_lstm/" class="btn btn-neutral" title="Convolutional LSTM"><span class="icon icon-circle-arrow-left"></span> Previous</a>
</div>
<hr/>
<div role="contentinfo">
<!-- Copyright etc -->
</div>
Built with <a href="https://www.mkdocs.org/">MkDocs</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<div class="rst-versions" role="note" aria-label="versions">
<span class="rst-current-version" data-toggle="rst-current-version">
<a href="http://github.com/keras-team/keras/" class="fa fa-github" style="float: left; color: #fcfcfc"> GitHub</a>
<span><a href="../conv_lstm/" style="color: #fcfcfc;">« Previous</a></span>
<span style="margin-left: 15px"><a href="../image_ocr/" style="color: #fcfcfc">Next »</a></span>
</span>
</div>
<script>var base_url = '../..';</script>
<script src="../../js/theme.js" defer></script>
<script src="../../search/main.js" defer></script>
<script type="text/javascript" defer>
window.onload = function () {
SphinxRtdTheme.Navigation.enable(true);
};
</script>
</body>
</html>
|