File: index.html

package info (click to toggle)
keras 2.3.1%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 9,288 kB
  • sloc: python: 48,266; javascript: 1,794; xml: 297; makefile: 36; sh: 30
file content (564 lines) | stat: -rw-r--r-- 23,984 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  <meta http-equiv="X-UA-Compatible" content="IE=edge">
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  
  <link rel="canonical" href="http://keras.io/examples/lstm_stateful/">
  <link rel="shortcut icon" href="../../img/favicon.ico">
  <title>Stateful LSTM - Keras Documentation</title>
  <link href='https://fonts.googleapis.com/css?family=Lato:400,700|Source+Sans+Pro:400,700|Inconsolata:400,700' rel='stylesheet' type='text/css'>

  <link rel="stylesheet" href="../../css/theme.css" type="text/css" />
  <link rel="stylesheet" href="../../css/theme_extra.css" type="text/css" />
  <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/styles/github.min.css">
  
  <script>
    // Current page data
    var mkdocs_page_name = "Stateful LSTM";
    var mkdocs_page_input_path = "examples/lstm_stateful.md";
    var mkdocs_page_url = "/examples/lstm_stateful/";
  </script>
  
  <script src="../../js/jquery-2.1.1.min.js" defer></script>
  <script src="../../js/modernizr-2.8.3.min.js" defer></script>
  <script src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/highlight.min.js"></script>
  <script>hljs.initHighlightingOnLoad();</script> 
  
  <script>
      (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
      (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
      m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
      })(window,document,'script','https://www.google-analytics.com/analytics.js','ga');

      ga('create', 'UA-61785484-1', 'keras.io');
      ga('send', 'pageview');
  </script>
  
</head>

<body class="wy-body-for-nav" role="document">

  <div class="wy-grid-for-nav">

    
    <nav data-toggle="wy-nav-shift" class="wy-nav-side stickynav">
    <div class="wy-side-scroll">
      <a href="">
        <div class="keras-logo">
          <img src="/img/keras-logo-small.jpg" class="keras-logo-img">
          Keras Documentation
        </div>
      </a>

      <div class="wy-side-nav-search">
        <div role="search">
  <form id ="rtd-search-form" class="wy-form" action="../../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" title="Type search term here" />
  </form>
</div>
      </div>

      <div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../..">Home</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../../why-use-keras/">Why use Keras</a>
                    </li>
                </ul>
                <p class="caption"><span class="caption-text">Getting started</span></p>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../../getting-started/sequential-model-guide/">Guide to the Sequential model</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../../getting-started/functional-api-guide/">Guide to the Functional API</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../../getting-started/faq/">FAQ</a>
                    </li>
                </ul>
                <p class="caption"><span class="caption-text">Models</span></p>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../../models/about-keras-models/">About Keras models</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../../models/sequential/">Sequential</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../../models/model/">Model (functional API)</a>
                    </li>
                </ul>
                <p class="caption"><span class="caption-text">Layers</span></p>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../../layers/about-keras-layers/">About Keras layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../../layers/core/">Core Layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../../layers/convolutional/">Convolutional Layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../../layers/pooling/">Pooling Layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../../layers/local/">Locally-connected Layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../../layers/recurrent/">Recurrent Layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../../layers/embeddings/">Embedding Layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../../layers/merge/">Merge Layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../../layers/advanced-activations/">Advanced Activations Layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../../layers/normalization/">Normalization Layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../../layers/noise/">Noise layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../../layers/wrappers/">Layer wrappers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../../layers/writing-your-own-keras-layers/">Writing your own Keras layers</a>
                    </li>
                </ul>
                <p class="caption"><span class="caption-text">Preprocessing</span></p>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../../preprocessing/sequence/">Sequence Preprocessing</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../../preprocessing/text/">Text Preprocessing</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../../preprocessing/image/">Image Preprocessing</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../../losses/">Losses</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../../metrics/">Metrics</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../../optimizers/">Optimizers</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../../activations/">Activations</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../../callbacks/">Callbacks</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../../datasets/">Datasets</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../../applications/">Applications</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../../backend/">Backend</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../../initializers/">Initializers</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../../regularizers/">Regularizers</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../../constraints/">Constraints</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../../visualization/">Visualization</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../../scikit-learn-api/">Scikit-learn API</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../../utils/">Utils</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../../contributing/">Contributing</a>
                    </li>
                </ul>
                <p class="caption"><span class="caption-text">Examples</span></p>
                <ul class="current">
                    <li class="toctree-l1"><a class="reference internal" href="../addition_rnn/">Addition RNN</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../antirectifier/">Custom layer - antirectifier</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../babi_rnn/">Baby RNN</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../babi_memnn/">Baby MemNN</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../cifar10_cnn/">CIFAR-10 CNN</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../cifar10_resnet/">CIFAR-10 ResNet</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../conv_filter_visualization/">Convolution filter visualization</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../conv_lstm/">Convolutional LSTM</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../deep_dream/">Deep Dream</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../image_ocr/">Image OCR</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../imdb_bidirectional_lstm/">Bidirectional LSTM</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../imdb_cnn/">1D CNN for text classification</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../imdb_cnn_lstm/">Sentiment classification CNN-LSTM</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../imdb_fasttext/">Fasttext for text classification</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../imdb_lstm/">Sentiment classification LSTM</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../lstm_seq2seq/">Sequence to sequence - training</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../lstm_seq2seq_restore/">Sequence to sequence - prediction</a>
                    </li>
                    <li class="toctree-l1 current"><a class="reference internal current" href="./">Stateful LSTM</a>
    <ul class="current">
    </ul>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../lstm_text_generation/">LSTM for text generation</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../mnist_acgan/">Auxiliary Classifier GAN</a>
                    </li>
                </ul>
      </div>
    </div>
    </nav>

    <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">

      
      <nav class="wy-nav-top" role="navigation" aria-label="top navigation">
        <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
        <a href="../..">Keras Documentation</a>
      </nav>

      
      <div class="wy-nav-content">
        <div class="rst-content">
          <div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
    <li><a href="../..">Docs</a> &raquo;</li>
    
      
        
          <li>Examples &raquo;</li>
        
      
    
    <li>Stateful LSTM</li>
    <li class="wy-breadcrumbs-aside">
      
        <a href="https://github.com/keras-team/keras/tree/master/docs"
          class="icon icon-github"> Edit on GitHub</a>
      
    </li>
  </ul>
  
  <hr/>
</div>
          <div role="main">
            <div class="section">
              
                <h1 id="how-to-use-a-stateful-lstm-model-stateful-vs-stateless-lstm-performance-comparison">How to use a stateful LSTM model, stateful vs stateless LSTM performance comparison</h1>
<p><a href="/layers/recurrent/#lstm">More documentation about the Keras LSTM model</a></p>
<p>The models are trained on an input/output pair, where
the input is a generated uniformly distributed
random sequence of length = <code>input_len</code>,
and the output is a moving average of the input with window length = <code>tsteps</code>.
Both <code>input_len</code> and <code>tsteps</code> are defined in the "editable parameters"
section.</p>
<p>A larger <code>tsteps</code> value means that the LSTM will need more memory
to figure out the input-output relationship.
This memory length is controlled by the <code>lahead</code> variable (more details below).</p>
<p>The rest of the parameters are:</p>
<ul>
<li><code>input_len</code>: the length of the generated input sequence</li>
<li><code>lahead</code>: the input sequence length that the LSTM
  is trained on for each output point</li>
<li><code>batch_size</code>, <code>epochs</code>: same parameters as in the <code>model.fit(...)</code>
  function</li>
</ul>
<p>When <code>lahead &gt; 1</code>, the model input is preprocessed to a "rolling window view"
of the data, with the window length = <code>lahead</code>.
This is similar to sklearn's <code>view_as_windows</code>
with <code>window_shape</code> <a href="http://scikit-image.org/docs/0.10.x/api/skimage.util.html#view-as-windows">being a single number.</a></p>
<p>When <code>lahead &lt; tsteps</code>, only the stateful LSTM converges because its
statefulness allows it to see beyond the capability that lahead
gave it to fit the n-point average. The stateless LSTM does not have
this capability, and hence is limited by its <code>lahead</code> parameter,
which is not sufficient to see the n-point average.</p>
<p>When <code>lahead &gt;= tsteps</code>, both the stateful and stateless LSTM converge.</p>
<pre><code class="python">from __future__ import print_function
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from keras.models import Sequential
from keras.layers import Dense, LSTM

# ----------------------------------------------------------
# EDITABLE PARAMETERS
# Read the documentation in the script head for more details
# ----------------------------------------------------------

# length of input
input_len = 1000

# The window length of the moving average used to generate
# the output from the input in the input/output pair used
# to train the LSTM
# e.g. if tsteps=2 and input=[1, 2, 3, 4, 5],
#      then output=[1.5, 2.5, 3.5, 4.5]
tsteps = 2

# The input sequence length that the LSTM is trained on for each output point
lahead = 1

# training parameters passed to &quot;model.fit(...)&quot;
batch_size = 1
epochs = 10

# ------------
# MAIN PROGRAM
# ------------

print(&quot;*&quot; * 33)
if lahead &gt;= tsteps:
    print(&quot;STATELESS LSTM WILL ALSO CONVERGE&quot;)
else:
    print(&quot;STATELESS LSTM WILL NOT CONVERGE&quot;)
print(&quot;*&quot; * 33)

np.random.seed(1986)

print('Generating Data...')


def gen_uniform_amp(amp=1, xn=10000):
    &quot;&quot;&quot;Generates uniform random data between
    -amp and +amp
    and of length xn

    # Arguments
        amp: maximum/minimum range of uniform data
        xn: length of series
    &quot;&quot;&quot;
    data_input = np.random.uniform(-1 * amp, +1 * amp, xn)
    data_input = pd.DataFrame(data_input)
    return data_input

# Since the output is a moving average of the input,
# the first few points of output will be NaN
# and will be dropped from the generated data
# before training the LSTM.
# Also, when lahead &gt; 1,
# the preprocessing step later of &quot;rolling window view&quot;
# will also cause some points to be lost.
# For aesthetic reasons,
# in order to maintain generated data length = input_len after pre-processing,
# add a few points to account for the values that will be lost.
to_drop = max(tsteps - 1, lahead - 1)
data_input = gen_uniform_amp(amp=0.1, xn=input_len + to_drop)

# set the target to be a N-point average of the input
expected_output = data_input.rolling(window=tsteps, center=False).mean()

# when lahead &gt; 1, need to convert the input to &quot;rolling window view&quot;
# https://docs.scipy.org/doc/numpy/reference/generated/numpy.repeat.html
if lahead &gt; 1:
    data_input = np.repeat(data_input.values, repeats=lahead, axis=1)
    data_input = pd.DataFrame(data_input)
    for i, c in enumerate(data_input.columns):
        data_input[c] = data_input[c].shift(i)

# drop the nan
expected_output = expected_output[to_drop:]
data_input = data_input[to_drop:]

print('Input shape:', data_input.shape)
print('Output shape:', expected_output.shape)
print('Input head: ')
print(data_input.head())
print('Output head: ')
print(expected_output.head())
print('Input tail: ')
print(data_input.tail())
print('Output tail: ')
print(expected_output.tail())

print('Plotting input and expected output')
plt.plot(data_input[0][:10], '.')
plt.plot(expected_output[0][:10], '-')
plt.legend(['Input', 'Expected output'])
plt.title('Input')
plt.show()


def create_model(stateful):
    model = Sequential()
    model.add(LSTM(20,
              input_shape=(lahead, 1),
              batch_size=batch_size,
              stateful=stateful))
    model.add(Dense(1))
    model.compile(loss='mse', optimizer='adam')
    return model

print('Creating Stateful Model...')
model_stateful = create_model(stateful=True)


# split train/test data
def split_data(x, y, ratio=0.8):
    to_train = int(input_len * ratio)
    # tweak to match with batch_size
    to_train -= to_train % batch_size

    x_train = x[:to_train]
    y_train = y[:to_train]
    x_test = x[to_train:]
    y_test = y[to_train:]

    # tweak to match with batch_size
    to_drop = x.shape[0] % batch_size
    if to_drop &gt; 0:
        x_test = x_test[:-1 * to_drop]
        y_test = y_test[:-1 * to_drop]

    # some reshaping
    reshape_3 = lambda x: x.values.reshape((x.shape[0], x.shape[1], 1))
    x_train = reshape_3(x_train)
    x_test = reshape_3(x_test)

    reshape_2 = lambda x: x.values.reshape((x.shape[0], 1))
    y_train = reshape_2(y_train)
    y_test = reshape_2(y_test)

    return (x_train, y_train), (x_test, y_test)


(x_train, y_train), (x_test, y_test) = split_data(data_input, expected_output)
print('x_train.shape: ', x_train.shape)
print('y_train.shape: ', y_train.shape)
print('x_test.shape: ', x_test.shape)
print('y_test.shape: ', y_test.shape)

print('Training')
for i in range(epochs):
    print('Epoch', i + 1, '/', epochs)
    # Note that the last state for sample i in a batch will
    # be used as initial state for sample i in the next batch.
    # Thus we are simultaneously training on batch_size series with
    # lower resolution than the original series contained in data_input.
    # Each of these series are offset by one step and can be
    # extracted with data_input[i::batch_size].
    model_stateful.fit(x_train,
                       y_train,
                       batch_size=batch_size,
                       epochs=1,
                       verbose=1,
                       validation_data=(x_test, y_test),
                       shuffle=False)
    model_stateful.reset_states()

print('Predicting')
predicted_stateful = model_stateful.predict(x_test, batch_size=batch_size)

print('Creating Stateless Model...')
model_stateless = create_model(stateful=False)

print('Training')
model_stateless.fit(x_train,
                    y_train,
                    batch_size=batch_size,
                    epochs=epochs,
                    verbose=1,
                    validation_data=(x_test, y_test),
                    shuffle=False)

print('Predicting')
predicted_stateless = model_stateless.predict(x_test, batch_size=batch_size)

# ----------------------------

print('Plotting Results')
plt.subplot(3, 1, 1)
plt.plot(y_test)
plt.title('Expected')
plt.subplot(3, 1, 2)
# drop the first &quot;tsteps-1&quot; because it is not possible to predict them
# since the &quot;previous&quot; timesteps to use do not exist
plt.plot((y_test - predicted_stateful).flatten()[tsteps - 1:])
plt.title('Stateful: Expected - Predicted')
plt.subplot(3, 1, 3)
plt.plot((y_test - predicted_stateless).flatten())
plt.title('Stateless: Expected - Predicted')
plt.show()
</code></pre>
              
            </div>
          </div>
          <footer>
  
    <div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
      
        <a href="../lstm_text_generation/" class="btn btn-neutral float-right" title="LSTM for text generation">Next <span class="icon icon-circle-arrow-right"></span></a>
      
      
        <a href="../lstm_seq2seq_restore/" class="btn btn-neutral" title="Sequence to sequence - prediction"><span class="icon icon-circle-arrow-left"></span> Previous</a>
      
    </div>
  

  <hr/>

  <div role="contentinfo">
    <!-- Copyright etc -->
    
  </div>

  Built with <a href="https://www.mkdocs.org/">MkDocs</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
      
        </div>
      </div>

    </section>

  </div>

  <div class="rst-versions" role="note" aria-label="versions">
    <span class="rst-current-version" data-toggle="rst-current-version">
      
          <a href="http://github.com/keras-team/keras/" class="fa fa-github" style="float: left; color: #fcfcfc"> GitHub</a>
      
      
        <span><a href="../lstm_seq2seq_restore/" style="color: #fcfcfc;">&laquo; Previous</a></span>
      
      
        <span style="margin-left: 15px"><a href="../lstm_text_generation/" style="color: #fcfcfc">Next &raquo;</a></span>
      
    </span>
</div>
    <script>var base_url = '../..';</script>
    <script src="../../js/theme.js" defer></script>
      <script src="../../search/main.js" defer></script>
    <script type="text/javascript" defer>
        window.onload = function () {
            SphinxRtdTheme.Navigation.enable(true);
        };
    </script>

</body>
</html>