1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
|
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<link rel="canonical" href="http://keras.io/examples/mnist_net2net/">
<link rel="shortcut icon" href="../../img/favicon.ico">
<title>Mnist net2net - Keras Documentation</title>
<link href='https://fonts.googleapis.com/css?family=Lato:400,700|Source+Sans+Pro:400,700|Inconsolata:400,700' rel='stylesheet' type='text/css'>
<link rel="stylesheet" href="../../css/theme.css" type="text/css" />
<link rel="stylesheet" href="../../css/theme_extra.css" type="text/css" />
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/styles/github.min.css">
<script>
// Current page data
var mkdocs_page_name = "Mnist net2net";
var mkdocs_page_input_path = "examples/mnist_net2net.md";
var mkdocs_page_url = "/examples/mnist_net2net/";
</script>
<script src="../../js/jquery-2.1.1.min.js" defer></script>
<script src="../../js/modernizr-2.8.3.min.js" defer></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/highlight.min.js"></script>
<script>hljs.initHighlightingOnLoad();</script>
<script>
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
})(window,document,'script','https://www.google-analytics.com/analytics.js','ga');
ga('create', 'UA-61785484-1', 'keras.io');
ga('send', 'pageview');
</script>
</head>
<body class="wy-body-for-nav" role="document">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side stickynav">
<div class="wy-side-scroll">
<a href="">
<div class="keras-logo">
<img src="/img/keras-logo-small.jpg" class="keras-logo-img">
Keras Documentation
</div>
</a>
<div class="wy-side-nav-search">
<div role="search">
<form id ="rtd-search-form" class="wy-form" action="../../search.html" method="get">
<input type="text" name="q" placeholder="Search docs" title="Type search term here" />
</form>
</div>
</div>
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<ul>
<li class="toctree-l1"><a class="reference internal" href="../..">Home</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../why-use-keras/">Why use Keras</a>
</li>
</ul>
<p class="caption"><span class="caption-text">Getting started</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../getting-started/sequential-model-guide/">Guide to the Sequential model</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../getting-started/functional-api-guide/">Guide to the Functional API</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../getting-started/faq/">FAQ</a>
</li>
</ul>
<p class="caption"><span class="caption-text">Models</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../models/about-keras-models/">About Keras models</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../models/sequential/">Sequential</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../models/model/">Model (functional API)</a>
</li>
</ul>
<p class="caption"><span class="caption-text">Layers</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../layers/about-keras-layers/">About Keras layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../layers/core/">Core Layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../layers/convolutional/">Convolutional Layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../layers/pooling/">Pooling Layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../layers/local/">Locally-connected Layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../layers/recurrent/">Recurrent Layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../layers/embeddings/">Embedding Layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../layers/merge/">Merge Layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../layers/advanced-activations/">Advanced Activations Layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../layers/normalization/">Normalization Layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../layers/noise/">Noise layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../layers/wrappers/">Layer wrappers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../layers/writing-your-own-keras-layers/">Writing your own Keras layers</a>
</li>
</ul>
<p class="caption"><span class="caption-text">Preprocessing</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../preprocessing/sequence/">Sequence Preprocessing</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../preprocessing/text/">Text Preprocessing</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../preprocessing/image/">Image Preprocessing</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../losses/">Losses</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../metrics/">Metrics</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../optimizers/">Optimizers</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../activations/">Activations</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../callbacks/">Callbacks</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../datasets/">Datasets</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../applications/">Applications</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../backend/">Backend</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../initializers/">Initializers</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../regularizers/">Regularizers</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../constraints/">Constraints</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../visualization/">Visualization</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../scikit-learn-api/">Scikit-learn API</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../utils/">Utils</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../contributing/">Contributing</a>
</li>
</ul>
<p class="caption"><span class="caption-text">Examples</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../addition_rnn/">Addition RNN</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../antirectifier/">Custom layer - antirectifier</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../babi_rnn/">Baby RNN</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../babi_memnn/">Baby MemNN</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../cifar10_cnn/">CIFAR-10 CNN</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../cifar10_resnet/">CIFAR-10 ResNet</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../conv_filter_visualization/">Convolution filter visualization</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../conv_lstm/">Convolutional LSTM</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../deep_dream/">Deep Dream</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../image_ocr/">Image OCR</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../imdb_bidirectional_lstm/">Bidirectional LSTM</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../imdb_cnn/">1D CNN for text classification</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../imdb_cnn_lstm/">Sentiment classification CNN-LSTM</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../imdb_fasttext/">Fasttext for text classification</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../imdb_lstm/">Sentiment classification LSTM</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../lstm_seq2seq/">Sequence to sequence - training</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../lstm_seq2seq_restore/">Sequence to sequence - prediction</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../lstm_stateful/">Stateful LSTM</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../lstm_text_generation/">LSTM for text generation</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../mnist_acgan/">Auxiliary Classifier GAN</a>
</li>
</ul>
</div>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
<nav class="wy-nav-top" role="navigation" aria-label="top navigation">
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="../..">Keras Documentation</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="../..">Docs</a> »</li>
<li>Mnist net2net</li>
<li class="wy-breadcrumbs-aside">
<a href="https://github.com/keras-team/keras/tree/master/docs"
class="icon icon-github"> Edit on GitHub</a>
</li>
</ul>
<hr/>
</div>
<div role="main">
<div class="section">
<p>This is an implementation of Net2Net experiment with MNIST in
'Net2Net: Accelerating Learning via Knowledge Transfer'
by Tianqi Chen, Ian Goodfellow, and Jonathon Shlens</p>
<p>arXiv:1511.05641v4 [cs.LG] 23 Apr 2016
http://arxiv.org/abs/1511.05641</p>
<h1 id="notes">Notes</h1>
<ul>
<li>What:</li>
<li>Net2Net is a group of methods to transfer knowledge from a teacher neural
net to a student net,so that the student net can be trained faster than
from scratch.</li>
<li>The paper discussed two specific methods of Net2Net, i.e. Net2WiderNet
and Net2DeeperNet.</li>
<li>Net2WiderNet replaces a model with an equivalent wider model that has
more units in each hidden layer.</li>
<li>Net2DeeperNet replaces a model with an equivalent deeper model.</li>
<li>Both are based on the idea of 'function-preserving transformations of
neural nets'.</li>
<li>Why:</li>
<li>Enable fast exploration of multiple neural nets in experimentation and
design process,by creating a series of wider and deeper models with
transferable knowledge.</li>
<li>Enable 'lifelong learning system' by gradually adjusting model complexity
to data availability,and reusing transferable knowledge.</li>
</ul>
<h1 id="experiments">Experiments</h1>
<ul>
<li>Teacher model: a basic CNN model trained on MNIST for 3 epochs.</li>
<li>Net2WiderNet experiment:</li>
<li>Student model has a wider Conv2D layer and a wider FC layer.</li>
<li>Comparison of 'random-padding' vs 'net2wider' weight initialization.</li>
<li>With both methods, after 1 epoch, student model should perform as well as
teacher model, but 'net2wider' is slightly better.</li>
<li>Net2DeeperNet experiment:</li>
<li>Student model has an extra Conv2D layer and an extra FC layer.</li>
<li>Comparison of 'random-init' vs 'net2deeper' weight initialization.</li>
<li>After 1 epoch, performance of 'net2deeper' is better than 'random-init'.</li>
<li>Hyper-parameters:</li>
<li>SGD with momentum=0.9 is used for training teacher and student models.</li>
<li>Learning rate adjustment: it's suggested to reduce learning rate
to 1/10 for student model.</li>
<li>Addition of noise in 'net2wider' is used to break weight symmetry
and thus enable full capacity of student models. It is optional
when a Dropout layer is used.</li>
</ul>
<h1 id="results">Results</h1>
<ul>
<li>Tested with TF backend and 'channels_last' image_data_format.</li>
<li>Running on GPU GeForce GTX Titan X Maxwell</li>
<li>Performance Comparisons - validation loss values during first 3 epochs:</li>
</ul>
<p>Teacher model ...
(0) teacher_model: 0.0537 0.0354 0.0356</p>
<p>Experiment of Net2WiderNet ...
(1) wider_random_pad: 0.0320 0.0317 0.0289
(2) wider_net2wider: 0.0271 0.0274 0.0270</p>
<p>Experiment of Net2DeeperNet ...
(3) deeper_random_init: 0.0682 0.0506 0.0468
(4) deeper_net2deeper: 0.0292 0.0294 0.0286</p>
<pre><code class="python">from __future__ import print_function
import numpy as np
import keras
from keras import backend as K
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Dense, Flatten
from keras.optimizers import SGD
from keras.datasets import mnist
if K.image_data_format() == 'channels_first':
input_shape = (1, 28, 28) # image shape
else:
input_shape = (28, 28, 1) # image shape
num_classes = 10 # number of classes
epochs = 3
# load and pre-process data
def preprocess_input(x):
return x.astype('float32').reshape((-1,) + input_shape) / 255
def preprocess_output(y):
return keras.utils.to_categorical(y)
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = map(preprocess_input, [x_train, x_test])
y_train, y_test = map(preprocess_output, [y_train, y_test])
print('Loading MNIST data...')
print('x_train shape:', x_train.shape, 'y_train shape:', y_train.shape)
print('x_test shape:', x_test.shape, 'y_test shape', y_test.shape)
# knowledge transfer algorithms
def wider2net_conv2d(teacher_w1, teacher_b1, teacher_w2, new_width, init):
'''Get initial weights for a wider conv2d layer with a bigger filters,
by 'random-padding' or 'net2wider'.
# Arguments
teacher_w1: `weight` of conv2d layer to become wider,
of shape (filters1, num_channel1, kh1, kw1)
teacher_b1: `bias` of conv2d layer to become wider,
of shape (filters1, )
teacher_w2: `weight` of next connected conv2d layer,
of shape (filters2, num_channel2, kh2, kw2)
new_width: new `filters` for the wider conv2d layer
init: initialization algorithm for new weights,
either 'random-pad' or 'net2wider'
'''
assert teacher_w1.shape[0] == teacher_w2.shape[1], (
'successive layers from teacher model should have compatible shapes')
assert teacher_w1.shape[3] == teacher_b1.shape[0], (
'weight and bias from same layer should have compatible shapes')
assert new_width > teacher_w1.shape[3], (
'new width (filters) should be bigger than the existing one')
n = new_width - teacher_w1.shape[3]
if init == 'random-pad':
new_w1 = np.random.normal(0, 0.1, size=teacher_w1.shape[:3] + (n,))
new_b1 = np.ones(n) * 0.1
new_w2 = np.random.normal(
0, 0.1,
size=teacher_w2.shape[:2] + (n, teacher_w2.shape[3]))
elif init == 'net2wider':
index = np.random.randint(teacher_w1.shape[3], size=n)
factors = np.bincount(index)[index] + 1.
new_w1 = teacher_w1[:, :, :, index]
new_b1 = teacher_b1[index]
new_w2 = teacher_w2[:, :, index, :] / factors.reshape((1, 1, -1, 1))
else:
raise ValueError('Unsupported weight initializer: %s' % init)
student_w1 = np.concatenate((teacher_w1, new_w1), axis=3)
if init == 'random-pad':
student_w2 = np.concatenate((teacher_w2, new_w2), axis=2)
elif init == 'net2wider':
# add small noise to break symmetry, so that student model will have
# full capacity later
noise = np.random.normal(0, 5e-2 * new_w2.std(), size=new_w2.shape)
student_w2 = np.concatenate((teacher_w2, new_w2 + noise), axis=2)
student_w2[:, :, index, :] = new_w2
student_b1 = np.concatenate((teacher_b1, new_b1), axis=0)
return student_w1, student_b1, student_w2
def wider2net_fc(teacher_w1, teacher_b1, teacher_w2, new_width, init):
'''Get initial weights for a wider fully connected (dense) layer
with a bigger nout, by 'random-padding' or 'net2wider'.
# Arguments
teacher_w1: `weight` of fc layer to become wider,
of shape (nin1, nout1)
teacher_b1: `bias` of fc layer to become wider,
of shape (nout1, )
teacher_w2: `weight` of next connected fc layer,
of shape (nin2, nout2)
new_width: new `nout` for the wider fc layer
init: initialization algorithm for new weights,
either 'random-pad' or 'net2wider'
'''
assert teacher_w1.shape[1] == teacher_w2.shape[0], (
'successive layers from teacher model should have compatible shapes')
assert teacher_w1.shape[1] == teacher_b1.shape[0], (
'weight and bias from same layer should have compatible shapes')
assert new_width > teacher_w1.shape[1], (
'new width (nout) should be bigger than the existing one')
n = new_width - teacher_w1.shape[1]
if init == 'random-pad':
new_w1 = np.random.normal(0, 0.1, size=(teacher_w1.shape[0], n))
new_b1 = np.ones(n) * 0.1
new_w2 = np.random.normal(0, 0.1, size=(n, teacher_w2.shape[1]))
elif init == 'net2wider':
index = np.random.randint(teacher_w1.shape[1], size=n)
factors = np.bincount(index)[index] + 1.
new_w1 = teacher_w1[:, index]
new_b1 = teacher_b1[index]
new_w2 = teacher_w2[index, :] / factors[:, np.newaxis]
else:
raise ValueError('Unsupported weight initializer: %s' % init)
student_w1 = np.concatenate((teacher_w1, new_w1), axis=1)
if init == 'random-pad':
student_w2 = np.concatenate((teacher_w2, new_w2), axis=0)
elif init == 'net2wider':
# add small noise to break symmetry, so that student model will have
# full capacity later
noise = np.random.normal(0, 5e-2 * new_w2.std(), size=new_w2.shape)
student_w2 = np.concatenate((teacher_w2, new_w2 + noise), axis=0)
student_w2[index, :] = new_w2
student_b1 = np.concatenate((teacher_b1, new_b1), axis=0)
return student_w1, student_b1, student_w2
def deeper2net_conv2d(teacher_w):
'''Get initial weights for a deeper conv2d layer by net2deeper'.
# Arguments
teacher_w: `weight` of previous conv2d layer,
of shape (kh, kw, num_channel, filters)
'''
kh, kw, num_channel, filters = teacher_w.shape
student_w = np.zeros_like(teacher_w)
for i in range(filters):
student_w[(kh - 1) // 2, (kw - 1) // 2, i, i] = 1.
student_b = np.zeros(filters)
return student_w, student_b
def copy_weights(teacher_model, student_model, layer_names):
'''Copy weights from teacher_model to student_model,
for layers with names listed in layer_names
'''
for name in layer_names:
weights = teacher_model.get_layer(name=name).get_weights()
student_model.get_layer(name=name).set_weights(weights)
# methods to construct teacher_model and student_models
def make_teacher_model(x_train, y_train,
x_test, y_test,
epochs):
'''Train and benchmark performance of a simple CNN.
(0) Teacher model
'''
model = Sequential()
model.add(Conv2D(64, 3, input_shape=input_shape,
padding='same', name='conv1'))
model.add(MaxPooling2D(2, name='pool1'))
model.add(Conv2D(64, 3, padding='same', name='conv2'))
model.add(MaxPooling2D(2, name='pool2'))
model.add(Flatten(name='flatten'))
model.add(Dense(64, activation='relu', name='fc1'))
model.add(Dense(num_classes, activation='softmax', name='fc2'))
model.compile(loss='categorical_crossentropy',
optimizer=SGD(learning_rate=0.01, momentum=0.9),
metrics=['accuracy'])
model.fit(x_train, y_train,
epochs=epochs,
validation_data=(x_test, y_test))
return model
def make_wider_student_model(teacher_model,
x_train, y_train,
x_test, y_test,
init, epochs):
'''Train a wider student model based on teacher_model,
with either 'random-pad' (baseline) or 'net2wider'
'''
new_conv1_width = 128
new_fc1_width = 128
model = Sequential()
# a wider conv1 compared to teacher_model
model.add(Conv2D(new_conv1_width, 3, input_shape=input_shape,
padding='same', name='conv1'))
model.add(MaxPooling2D(2, name='pool1'))
model.add(Conv2D(64, 3, padding='same', name='conv2'))
model.add(MaxPooling2D(2, name='pool2'))
model.add(Flatten(name='flatten'))
# a wider fc1 compared to teacher model
model.add(Dense(new_fc1_width, activation='relu', name='fc1'))
model.add(Dense(num_classes, activation='softmax', name='fc2'))
# The weights for other layers need to be copied from teacher_model
# to student_model, except for widened layers
# and their immediate downstreams, which will be initialized separately.
# For this example there are no other layers that need to be copied.
w_conv1, b_conv1 = teacher_model.get_layer('conv1').get_weights()
w_conv2, b_conv2 = teacher_model.get_layer('conv2').get_weights()
new_w_conv1, new_b_conv1, new_w_conv2 = wider2net_conv2d(
w_conv1, b_conv1, w_conv2, new_conv1_width, init)
model.get_layer('conv1').set_weights([new_w_conv1, new_b_conv1])
model.get_layer('conv2').set_weights([new_w_conv2, b_conv2])
w_fc1, b_fc1 = teacher_model.get_layer('fc1').get_weights()
w_fc2, b_fc2 = teacher_model.get_layer('fc2').get_weights()
new_w_fc1, new_b_fc1, new_w_fc2 = wider2net_fc(
w_fc1, b_fc1, w_fc2, new_fc1_width, init)
model.get_layer('fc1').set_weights([new_w_fc1, new_b_fc1])
model.get_layer('fc2').set_weights([new_w_fc2, b_fc2])
model.compile(loss='categorical_crossentropy',
optimizer=SGD(learning_rate=0.001, momentum=0.9),
metrics=['accuracy'])
model.fit(x_train, y_train,
epochs=epochs,
validation_data=(x_test, y_test))
def make_deeper_student_model(teacher_model,
x_train, y_train,
x_test, y_test,
init, epochs):
'''Train a deeper student model based on teacher_model,
with either 'random-init' (baseline) or 'net2deeper'
'''
model = Sequential()
model.add(Conv2D(64, 3, input_shape=input_shape,
padding='same', name='conv1'))
model.add(MaxPooling2D(2, name='pool1'))
model.add(Conv2D(64, 3, padding='same', name='conv2'))
# add another conv2d layer to make original conv2 deeper
if init == 'net2deeper':
prev_w, _ = model.get_layer('conv2').get_weights()
new_weights = deeper2net_conv2d(prev_w)
model.add(Conv2D(64, 3, padding='same',
name='conv2-deeper', weights=new_weights))
elif init == 'random-init':
model.add(Conv2D(64, 3, padding='same', name='conv2-deeper'))
else:
raise ValueError('Unsupported weight initializer: %s' % init)
model.add(MaxPooling2D(2, name='pool2'))
model.add(Flatten(name='flatten'))
model.add(Dense(64, activation='relu', name='fc1'))
# add another fc layer to make original fc1 deeper
if init == 'net2deeper':
# net2deeper for fc layer with relu, is just an identity initializer
model.add(Dense(64, kernel_initializer='identity',
activation='relu', name='fc1-deeper'))
elif init == 'random-init':
model.add(Dense(64, activation='relu', name='fc1-deeper'))
else:
raise ValueError('Unsupported weight initializer: %s' % init)
model.add(Dense(num_classes, activation='softmax', name='fc2'))
# copy weights for other layers
copy_weights(teacher_model, model, layer_names=[
'conv1', 'conv2', 'fc1', 'fc2'])
model.compile(loss='categorical_crossentropy',
optimizer=SGD(learning_rate=0.001, momentum=0.9),
metrics=['accuracy'])
model.fit(x_train, y_train,
epochs=epochs,
validation_data=(x_test, y_test))
# experiments setup
def net2wider_experiment():
'''Benchmark performances of
(1) a wider student model with `random_pad` initializer
(2) a wider student model with `Net2WiderNet` initializer
'''
print('\nExperiment of Net2WiderNet ...')
print('\n(1) building wider student model by random padding ...')
make_wider_student_model(teacher_model,
x_train, y_train,
x_test, y_test,
init='random-pad',
epochs=epochs)
print('\n(2) building wider student model by net2wider ...')
make_wider_student_model(teacher_model,
x_train, y_train,
x_test, y_test,
init='net2wider',
epochs=epochs)
def net2deeper_experiment():
'''Benchmark performances of
(3) a deeper student model with `random_init` initializer
(4) a deeper student model with `Net2DeeperNet` initializer
'''
print('\nExperiment of Net2DeeperNet ...')
print('\n(3) building deeper student model by random init ...')
make_deeper_student_model(teacher_model,
x_train, y_train,
x_test, y_test,
init='random-init',
epochs=epochs)
print('\n(4) building deeper student model by net2deeper ...')
make_deeper_student_model(teacher_model,
x_train, y_train,
x_test, y_test,
init='net2deeper',
epochs=epochs)
print('\n(0) building teacher model ...')
teacher_model = make_teacher_model(x_train, y_train,
x_test, y_test,
epochs=epochs)
# run the experiments
net2wider_experiment()
net2deeper_experiment()
</code></pre>
</div>
</div>
<footer>
<hr/>
<div role="contentinfo">
<!-- Copyright etc -->
</div>
Built with <a href="https://www.mkdocs.org/">MkDocs</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<div class="rst-versions" role="note" aria-label="versions">
<span class="rst-current-version" data-toggle="rst-current-version">
<a href="http://github.com/keras-team/keras/" class="fa fa-github" style="float: left; color: #fcfcfc"> GitHub</a>
</span>
</div>
<script>var base_url = '../..';</script>
<script src="../../js/theme.js" defer></script>
<script src="../../search/main.js" defer></script>
<script type="text/javascript" defer>
window.onload = function () {
SphinxRtdTheme.Navigation.enable(true);
};
</script>
</body>
</html>
|