File: index.html

package info (click to toggle)
keras 2.3.1%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 9,288 kB
  • sloc: python: 48,266; javascript: 1,794; xml: 297; makefile: 36; sh: 30
file content (681 lines) | stat: -rw-r--r-- 28,969 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  <meta http-equiv="X-UA-Compatible" content="IE=edge">
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  
  <link rel="canonical" href="http://keras.io/examples/neural_doodle/">
  <link rel="shortcut icon" href="../../img/favicon.ico">
  <title>Neural doodle - Keras Documentation</title>
  <link href='https://fonts.googleapis.com/css?family=Lato:400,700|Source+Sans+Pro:400,700|Inconsolata:400,700' rel='stylesheet' type='text/css'>

  <link rel="stylesheet" href="../../css/theme.css" type="text/css" />
  <link rel="stylesheet" href="../../css/theme_extra.css" type="text/css" />
  <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/styles/github.min.css">
  
  <script>
    // Current page data
    var mkdocs_page_name = "Neural doodle";
    var mkdocs_page_input_path = "examples/neural_doodle.md";
    var mkdocs_page_url = "/examples/neural_doodle/";
  </script>
  
  <script src="../../js/jquery-2.1.1.min.js" defer></script>
  <script src="../../js/modernizr-2.8.3.min.js" defer></script>
  <script src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/highlight.min.js"></script>
  <script>hljs.initHighlightingOnLoad();</script> 
  
  <script>
      (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
      (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
      m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
      })(window,document,'script','https://www.google-analytics.com/analytics.js','ga');

      ga('create', 'UA-61785484-1', 'keras.io');
      ga('send', 'pageview');
  </script>
  
</head>

<body class="wy-body-for-nav" role="document">

  <div class="wy-grid-for-nav">

    
    <nav data-toggle="wy-nav-shift" class="wy-nav-side stickynav">
    <div class="wy-side-scroll">
      <a href="">
        <div class="keras-logo">
          <img src="/img/keras-logo-small.jpg" class="keras-logo-img">
          Keras Documentation
        </div>
      </a>

      <div class="wy-side-nav-search">
        <div role="search">
  <form id ="rtd-search-form" class="wy-form" action="../../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" title="Type search term here" />
  </form>
</div>
      </div>

      <div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../..">Home</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../../why-use-keras/">Why use Keras</a>
                    </li>
                </ul>
                <p class="caption"><span class="caption-text">Getting started</span></p>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../../getting-started/sequential-model-guide/">Guide to the Sequential model</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../../getting-started/functional-api-guide/">Guide to the Functional API</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../../getting-started/faq/">FAQ</a>
                    </li>
                </ul>
                <p class="caption"><span class="caption-text">Models</span></p>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../../models/about-keras-models/">About Keras models</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../../models/sequential/">Sequential</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../../models/model/">Model (functional API)</a>
                    </li>
                </ul>
                <p class="caption"><span class="caption-text">Layers</span></p>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../../layers/about-keras-layers/">About Keras layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../../layers/core/">Core Layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../../layers/convolutional/">Convolutional Layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../../layers/pooling/">Pooling Layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../../layers/local/">Locally-connected Layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../../layers/recurrent/">Recurrent Layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../../layers/embeddings/">Embedding Layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../../layers/merge/">Merge Layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../../layers/advanced-activations/">Advanced Activations Layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../../layers/normalization/">Normalization Layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../../layers/noise/">Noise layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../../layers/wrappers/">Layer wrappers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../../layers/writing-your-own-keras-layers/">Writing your own Keras layers</a>
                    </li>
                </ul>
                <p class="caption"><span class="caption-text">Preprocessing</span></p>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../../preprocessing/sequence/">Sequence Preprocessing</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../../preprocessing/text/">Text Preprocessing</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../../preprocessing/image/">Image Preprocessing</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../../losses/">Losses</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../../metrics/">Metrics</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../../optimizers/">Optimizers</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../../activations/">Activations</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../../callbacks/">Callbacks</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../../datasets/">Datasets</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../../applications/">Applications</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../../backend/">Backend</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../../initializers/">Initializers</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../../regularizers/">Regularizers</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../../constraints/">Constraints</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../../visualization/">Visualization</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../../scikit-learn-api/">Scikit-learn API</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../../utils/">Utils</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../../contributing/">Contributing</a>
                    </li>
                </ul>
                <p class="caption"><span class="caption-text">Examples</span></p>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../addition_rnn/">Addition RNN</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../antirectifier/">Custom layer - antirectifier</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../babi_rnn/">Baby RNN</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../babi_memnn/">Baby MemNN</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../cifar10_cnn/">CIFAR-10 CNN</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../cifar10_resnet/">CIFAR-10 ResNet</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../conv_filter_visualization/">Convolution filter visualization</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../conv_lstm/">Convolutional LSTM</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../deep_dream/">Deep Dream</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../image_ocr/">Image OCR</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../imdb_bidirectional_lstm/">Bidirectional LSTM</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../imdb_cnn/">1D CNN for text classification</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../imdb_cnn_lstm/">Sentiment classification CNN-LSTM</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../imdb_fasttext/">Fasttext for text classification</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../imdb_lstm/">Sentiment classification LSTM</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../lstm_seq2seq/">Sequence to sequence - training</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../lstm_seq2seq_restore/">Sequence to sequence - prediction</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../lstm_stateful/">Stateful LSTM</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../lstm_text_generation/">LSTM for text generation</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../mnist_acgan/">Auxiliary Classifier GAN</a>
                    </li>
                </ul>
      </div>
    </div>
    </nav>

    <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">

      
      <nav class="wy-nav-top" role="navigation" aria-label="top navigation">
        <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
        <a href="../..">Keras Documentation</a>
      </nav>

      
      <div class="wy-nav-content">
        <div class="rst-content">
          <div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
    <li><a href="../..">Docs</a> &raquo;</li>
    
      
    
    <li>Neural doodle</li>
    <li class="wy-breadcrumbs-aside">
      
        <a href="https://github.com/keras-team/keras/tree/master/docs"
          class="icon icon-github"> Edit on GitHub</a>
      
    </li>
  </ul>
  
  <hr/>
</div>
          <div role="main">
            <div class="section">
              
                <p>Neural doodle with Keras</p>
<h1 id="script-usage">Script Usage</h1>
<h2 id="arguments">Arguments</h2>
<pre><code>--nlabels:              # of regions (colors) in mask images
--style-image:          image to learn style from
--style-mask:           semantic labels for style image
--target-mask:          semantic labels for target image (your doodle)
--content-image:        optional image to learn content from
--target-image-prefix:  path prefix for generated target images
</code></pre>

<h2 id="example-1-doodle-using-a-style-image-style-mask">Example 1: doodle using a style image, style mask</h2>
<p>and target mask.</p>
<pre><code>python neural_doodle.py --nlabels 4 --style-image Monet/style.png --style-mask Monet/style_mask.png --target-mask Monet/target_mask.png --target-image-prefix generated/monet
</code></pre>

<h2 id="example-2-doodle-using-a-style-image-style-mask">Example 2: doodle using a style image, style mask,</h2>
<p>target mask and an optional content image.</p>
<pre><code>python neural_doodle.py --nlabels 4 --style-image Renoir/style.png --style-mask Renoir/style_mask.png --target-mask Renoir/target_mask.png --content-image Renoir/creek.jpg --target-image-prefix generated/renoir
</code></pre>

<h1 id="references">References</h1>
<ul>
<li>[Dmitry Ulyanov's blog on fast-neural-doodle]
    (http://dmitryulyanov.github.io/feed-forward-neural-doodle/)</li>
<li>[Torch code for fast-neural-doodle]
    (https://github.com/DmitryUlyanov/fast-neural-doodle)</li>
<li>[Torch code for online-neural-doodle]
    (https://github.com/DmitryUlyanov/online-neural-doodle)</li>
<li>[Paper Texture Networks: Feed-forward Synthesis of Textures and Stylized Images]
    (http://arxiv.org/abs/1603.03417)</li>
<li>[Discussion on parameter tuning]
    (https://github.com/keras-team/keras/issues/3705)</li>
</ul>
<h1 id="resources">Resources</h1>
<p>Example images can be downloaded from
https://github.com/DmitryUlyanov/fast-neural-doodle/tree/master/data</p>
<pre><code class="python">from __future__ import print_function
import time
import argparse
import numpy as np
from scipy.optimize import fmin_l_bfgs_b

from keras import backend as K
from keras.layers import Input, AveragePooling2D
from keras.models import Model
from keras.preprocessing.image import load_img, save_img, img_to_array
from keras.applications import vgg19

# Command line arguments
parser = argparse.ArgumentParser(description='Keras neural doodle example')
parser.add_argument('--nlabels', type=int,
                    help='number of semantic labels'
                    ' (regions in differnet colors)'
                    ' in style_mask/target_mask')
parser.add_argument('--style-image', type=str,
                    help='path to image to learn style from')
parser.add_argument('--style-mask', type=str,
                    help='path to semantic mask of style image')
parser.add_argument('--target-mask', type=str,
                    help='path to semantic mask of target image')
parser.add_argument('--content-image', type=str, default=None,
                    help='path to optional content image')
parser.add_argument('--target-image-prefix', type=str,
                    help='path prefix for generated results')
args = parser.parse_args()

style_img_path = args.style_image
style_mask_path = args.style_mask
target_mask_path = args.target_mask
content_img_path = args.content_image
target_img_prefix = args.target_image_prefix
use_content_img = content_img_path is not None

num_labels = args.nlabels
num_colors = 3  # RGB
# determine image sizes based on target_mask
ref_img = img_to_array(load_img(target_mask_path))
img_nrows, img_ncols = ref_img.shape[:2]

num_iterations = 50

total_variation_weight = 50.
style_weight = 1.
content_weight = 0.1 if use_content_img else 0

content_feature_layers = ['block5_conv2']
# To get better generation qualities, use more conv layers for style features
style_feature_layers = ['block1_conv1', 'block2_conv1', 'block3_conv1',
                        'block4_conv1', 'block5_conv1']


# helper functions for reading/processing images
def preprocess_image(image_path):
    img = load_img(image_path, target_size=(img_nrows, img_ncols))
    img = img_to_array(img)
    img = np.expand_dims(img, axis=0)
    img = vgg19.preprocess_input(img)
    return img


def deprocess_image(x):
    if K.image_data_format() == 'channels_first':
        x = x.reshape((3, img_nrows, img_ncols))
        x = x.transpose((1, 2, 0))
    else:
        x = x.reshape((img_nrows, img_ncols, 3))
    # Remove zero-center by mean pixel
    x[:, :, 0] += 103.939
    x[:, :, 1] += 116.779
    x[:, :, 2] += 123.68
    # 'BGR'-&gt;'RGB'
    x = x[:, :, ::-1]
    x = np.clip(x, 0, 255).astype('uint8')
    return x


def kmeans(xs, k):
    assert xs.ndim == 2
    try:
        from sklearn.cluster import k_means
        _, labels, _ = k_means(xs.astype('float64'), k)
    except ImportError:
        from scipy.cluster.vq import kmeans2
        _, labels = kmeans2(xs, k, missing='raise')
    return labels


def load_mask_labels():
    '''Load both target and style masks.
    A mask image (nr x nc) with m labels/colors will be loaded
    as a 4D boolean tensor:
        (1, m, nr, nc) for 'channels_first' or (1, nr, nc, m) for 'channels_last'
    '''
    target_mask_img = load_img(target_mask_path,
                               target_size=(img_nrows, img_ncols))
    target_mask_img = img_to_array(target_mask_img)
    style_mask_img = load_img(style_mask_path,
                              target_size=(img_nrows, img_ncols))
    style_mask_img = img_to_array(style_mask_img)
    if K.image_data_format() == 'channels_first':
        mask_vecs = np.vstack([style_mask_img.reshape((3, -1)).T,
                               target_mask_img.reshape((3, -1)).T])
    else:
        mask_vecs = np.vstack([style_mask_img.reshape((-1, 3)),
                               target_mask_img.reshape((-1, 3))])

    labels = kmeans(mask_vecs, num_labels)
    style_mask_label = labels[:img_nrows *
                              img_ncols].reshape((img_nrows, img_ncols))
    target_mask_label = labels[img_nrows *
                               img_ncols:].reshape((img_nrows, img_ncols))

    stack_axis = 0 if K.image_data_format() == 'channels_first' else -1
    style_mask = np.stack([style_mask_label == r for r in range(num_labels)],
                          axis=stack_axis)
    target_mask = np.stack([target_mask_label == r for r in range(num_labels)],
                           axis=stack_axis)

    return (np.expand_dims(style_mask, axis=0),
            np.expand_dims(target_mask, axis=0))


# Create tensor variables for images
if K.image_data_format() == 'channels_first':
    shape = (1, num_colors, img_nrows, img_ncols)
else:
    shape = (1, img_nrows, img_ncols, num_colors)

style_image = K.variable(preprocess_image(style_img_path))
target_image = K.placeholder(shape=shape)
if use_content_img:
    content_image = K.variable(preprocess_image(content_img_path))
else:
    content_image = K.zeros(shape=shape)

images = K.concatenate([style_image, target_image, content_image], axis=0)

# Create tensor variables for masks
raw_style_mask, raw_target_mask = load_mask_labels()
style_mask = K.variable(raw_style_mask.astype('float32'))
target_mask = K.variable(raw_target_mask.astype('float32'))
masks = K.concatenate([style_mask, target_mask], axis=0)

# index constants for images and tasks variables
STYLE, TARGET, CONTENT = 0, 1, 2

# Build image model, mask model and use layer outputs as features
# image model as VGG19
image_model = vgg19.VGG19(include_top=False, input_tensor=images)

# mask model as a series of pooling
mask_input = Input(tensor=masks, shape=(None, None, None), name='mask_input')
x = mask_input
for layer in image_model.layers[1:]:
    name = 'mask_%s' % layer.name
    if 'conv' in layer.name:
        x = AveragePooling2D((3, 3), padding='same', strides=(
            1, 1), name=name)(x)
    elif 'pool' in layer.name:
        x = AveragePooling2D((2, 2), name=name)(x)
mask_model = Model(mask_input, x)

# Collect features from image_model and task_model
image_features = {}
mask_features = {}
for img_layer, mask_layer in zip(image_model.layers, mask_model.layers):
    if 'conv' in img_layer.name:
        assert 'mask_' + img_layer.name == mask_layer.name
        layer_name = img_layer.name
        img_feat, mask_feat = img_layer.output, mask_layer.output
        image_features[layer_name] = img_feat
        mask_features[layer_name] = mask_feat


# Define loss functions
def gram_matrix(x):
    assert K.ndim(x) == 3
    features = K.batch_flatten(x)
    gram = K.dot(features, K.transpose(features))
    return gram


def region_style_loss(style_image, target_image, style_mask, target_mask):
    '''Calculate style loss between style_image and target_image,
    for one common region specified by their (boolean) masks
    '''
    assert 3 == K.ndim(style_image) == K.ndim(target_image)
    assert 2 == K.ndim(style_mask) == K.ndim(target_mask)
    if K.image_data_format() == 'channels_first':
        masked_style = style_image * style_mask
        masked_target = target_image * target_mask
        num_channels = K.shape(style_image)[0]
    else:
        masked_style = K.permute_dimensions(
            style_image, (2, 0, 1)) * style_mask
        masked_target = K.permute_dimensions(
            target_image, (2, 0, 1)) * target_mask
        num_channels = K.shape(style_image)[-1]
    num_channels = K.cast(num_channels, dtype='float32')
    s = gram_matrix(masked_style) / K.mean(style_mask) / num_channels
    c = gram_matrix(masked_target) / K.mean(target_mask) / num_channels
    return K.mean(K.square(s - c))


def style_loss(style_image, target_image, style_masks, target_masks):
    '''Calculate style loss between style_image and target_image,
    in all regions.
    '''
    assert 3 == K.ndim(style_image) == K.ndim(target_image)
    assert 3 == K.ndim(style_masks) == K.ndim(target_masks)
    loss = K.variable(0)
    for i in range(num_labels):
        if K.image_data_format() == 'channels_first':
            style_mask = style_masks[i, :, :]
            target_mask = target_masks[i, :, :]
        else:
            style_mask = style_masks[:, :, i]
            target_mask = target_masks[:, :, i]
        loss = loss + region_style_loss(style_image,
                                        target_image,
                                        style_mask,
                                        target_mask)
    return loss


def content_loss(content_image, target_image):
    return K.sum(K.square(target_image - content_image))


def total_variation_loss(x):
    assert 4 == K.ndim(x)
    if K.image_data_format() == 'channels_first':
        a = K.square(x[:, :, :img_nrows - 1, :img_ncols - 1] -
                     x[:, :, 1:, :img_ncols - 1])
        b = K.square(x[:, :, :img_nrows - 1, :img_ncols - 1] -
                     x[:, :, :img_nrows - 1, 1:])
    else:
        a = K.square(x[:, :img_nrows - 1, :img_ncols - 1, :] -
                     x[:, 1:, :img_ncols - 1, :])
        b = K.square(x[:, :img_nrows - 1, :img_ncols - 1, :] -
                     x[:, :img_nrows - 1, 1:, :])
    return K.sum(K.pow(a + b, 1.25))


# Overall loss is the weighted sum of content_loss, style_loss and tv_loss
# Each individual loss uses features from image/mask models.
loss = K.variable(0)
for layer in content_feature_layers:
    content_feat = image_features[layer][CONTENT, :, :, :]
    target_feat = image_features[layer][TARGET, :, :, :]
    loss = loss + content_weight * content_loss(content_feat, target_feat)

for layer in style_feature_layers:
    style_feat = image_features[layer][STYLE, :, :, :]
    target_feat = image_features[layer][TARGET, :, :, :]
    style_masks = mask_features[layer][STYLE, :, :, :]
    target_masks = mask_features[layer][TARGET, :, :, :]
    sl = style_loss(style_feat, target_feat, style_masks, target_masks)
    loss = loss + (style_weight / len(style_feature_layers)) * sl

loss = loss + total_variation_weight * total_variation_loss(target_image)
loss_grads = K.gradients(loss, target_image)

# Evaluator class for computing efficiency
outputs = [loss]
if isinstance(loss_grads, (list, tuple)):
    outputs += loss_grads
else:
    outputs.append(loss_grads)

f_outputs = K.function([target_image], outputs)


def eval_loss_and_grads(x):
    if K.image_data_format() == 'channels_first':
        x = x.reshape((1, 3, img_nrows, img_ncols))
    else:
        x = x.reshape((1, img_nrows, img_ncols, 3))
    outs = f_outputs([x])
    loss_value = outs[0]
    if len(outs[1:]) == 1:
        grad_values = outs[1].flatten().astype('float64')
    else:
        grad_values = np.array(outs[1:]).flatten().astype('float64')
    return loss_value, grad_values


class Evaluator(object):

    def __init__(self):
        self.loss_value = None
        self.grads_values = None

    def loss(self, x):
        assert self.loss_value is None
        loss_value, grad_values = eval_loss_and_grads(x)
        self.loss_value = loss_value
        self.grad_values = grad_values
        return self.loss_value

    def grads(self, x):
        assert self.loss_value is not None
        grad_values = np.copy(self.grad_values)
        self.loss_value = None
        self.grad_values = None
        return grad_values


evaluator = Evaluator()

# Generate images by iterative optimization
if K.image_data_format() == 'channels_first':
    x = np.random.uniform(0, 255, (1, 3, img_nrows, img_ncols)) - 128.
else:
    x = np.random.uniform(0, 255, (1, img_nrows, img_ncols, 3)) - 128.

for i in range(num_iterations):
    print('Start of iteration', i, '/', num_iterations)
    start_time = time.time()
    x, min_val, info = fmin_l_bfgs_b(evaluator.loss, x.flatten(),
                                     fprime=evaluator.grads, maxfun=20)
    print('Current loss value:', min_val)
    # save current generated image
    img = deprocess_image(x.copy())
    fname = target_img_prefix + '_at_iteration_%d.png' % i
    save_img(fname, img)
    end_time = time.time()
    print('Image saved as', fname)
    print('Iteration %d completed in %ds' % (i, end_time - start_time))
</code></pre>
              
            </div>
          </div>
          <footer>
  

  <hr/>

  <div role="contentinfo">
    <!-- Copyright etc -->
    
  </div>

  Built with <a href="https://www.mkdocs.org/">MkDocs</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
      
        </div>
      </div>

    </section>

  </div>

  <div class="rst-versions" role="note" aria-label="versions">
    <span class="rst-current-version" data-toggle="rst-current-version">
      
          <a href="http://github.com/keras-team/keras/" class="fa fa-github" style="float: left; color: #fcfcfc"> GitHub</a>
      
      
      
    </span>
</div>
    <script>var base_url = '../..';</script>
    <script src="../../js/theme.js" defer></script>
      <script src="../../search/main.js" defer></script>
    <script type="text/javascript" defer>
        window.onload = function () {
            SphinxRtdTheme.Navigation.enable(true);
        };
    </script>

</body>
</html>