1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
|
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<link rel="canonical" href="http://keras.io/initializers/">
<link rel="shortcut icon" href="../img/favicon.ico">
<title>Initializers - Keras Documentation</title>
<link href='https://fonts.googleapis.com/css?family=Lato:400,700|Source+Sans+Pro:400,700|Inconsolata:400,700' rel='stylesheet' type='text/css'>
<link rel="stylesheet" href="../css/theme.css" type="text/css" />
<link rel="stylesheet" href="../css/theme_extra.css" type="text/css" />
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/styles/github.min.css">
<script>
// Current page data
var mkdocs_page_name = "Initializers";
var mkdocs_page_input_path = "initializers.md";
var mkdocs_page_url = "/initializers/";
</script>
<script src="../js/jquery-2.1.1.min.js" defer></script>
<script src="../js/modernizr-2.8.3.min.js" defer></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/highlight.min.js"></script>
<script>hljs.initHighlightingOnLoad();</script>
<script>
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
})(window,document,'script','https://www.google-analytics.com/analytics.js','ga');
ga('create', 'UA-61785484-1', 'keras.io');
ga('send', 'pageview');
</script>
</head>
<body class="wy-body-for-nav" role="document">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side stickynav">
<div class="wy-side-scroll">
<a href="">
<div class="keras-logo">
<img src="/img/keras-logo-small.jpg" class="keras-logo-img">
Keras Documentation
</div>
</a>
<div class="wy-side-nav-search">
<div role="search">
<form id ="rtd-search-form" class="wy-form" action="../search.html" method="get">
<input type="text" name="q" placeholder="Search docs" title="Type search term here" />
</form>
</div>
</div>
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<ul>
<li class="toctree-l1"><a class="reference internal" href="..">Home</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../why-use-keras/">Why use Keras</a>
</li>
</ul>
<p class="caption"><span class="caption-text">Getting started</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../getting-started/sequential-model-guide/">Guide to the Sequential model</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../getting-started/functional-api-guide/">Guide to the Functional API</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../getting-started/faq/">FAQ</a>
</li>
</ul>
<p class="caption"><span class="caption-text">Models</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../models/about-keras-models/">About Keras models</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../models/sequential/">Sequential</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../models/model/">Model (functional API)</a>
</li>
</ul>
<p class="caption"><span class="caption-text">Layers</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../layers/about-keras-layers/">About Keras layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../layers/core/">Core Layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../layers/convolutional/">Convolutional Layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../layers/pooling/">Pooling Layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../layers/local/">Locally-connected Layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../layers/recurrent/">Recurrent Layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../layers/embeddings/">Embedding Layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../layers/merge/">Merge Layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../layers/advanced-activations/">Advanced Activations Layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../layers/normalization/">Normalization Layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../layers/noise/">Noise layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../layers/wrappers/">Layer wrappers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../layers/writing-your-own-keras-layers/">Writing your own Keras layers</a>
</li>
</ul>
<p class="caption"><span class="caption-text">Preprocessing</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../preprocessing/sequence/">Sequence Preprocessing</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../preprocessing/text/">Text Preprocessing</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../preprocessing/image/">Image Preprocessing</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../losses/">Losses</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../metrics/">Metrics</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../optimizers/">Optimizers</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../activations/">Activations</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../callbacks/">Callbacks</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../datasets/">Datasets</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../applications/">Applications</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../backend/">Backend</a>
</li>
</ul>
<ul class="current">
<li class="toctree-l1 current"><a class="reference internal current" href="./">Initializers</a>
<ul class="current">
</ul>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../regularizers/">Regularizers</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../constraints/">Constraints</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../visualization/">Visualization</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../scikit-learn-api/">Scikit-learn API</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../utils/">Utils</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../contributing/">Contributing</a>
</li>
</ul>
<p class="caption"><span class="caption-text">Examples</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../examples/addition_rnn/">Addition RNN</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../examples/antirectifier/">Custom layer - antirectifier</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../examples/babi_rnn/">Baby RNN</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../examples/babi_memnn/">Baby MemNN</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../examples/cifar10_cnn/">CIFAR-10 CNN</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../examples/cifar10_resnet/">CIFAR-10 ResNet</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../examples/conv_filter_visualization/">Convolution filter visualization</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../examples/conv_lstm/">Convolutional LSTM</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../examples/deep_dream/">Deep Dream</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../examples/image_ocr/">Image OCR</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../examples/imdb_bidirectional_lstm/">Bidirectional LSTM</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../examples/imdb_cnn/">1D CNN for text classification</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../examples/imdb_cnn_lstm/">Sentiment classification CNN-LSTM</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../examples/imdb_fasttext/">Fasttext for text classification</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../examples/imdb_lstm/">Sentiment classification LSTM</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../examples/lstm_seq2seq/">Sequence to sequence - training</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../examples/lstm_seq2seq_restore/">Sequence to sequence - prediction</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../examples/lstm_stateful/">Stateful LSTM</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../examples/lstm_text_generation/">LSTM for text generation</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../examples/mnist_acgan/">Auxiliary Classifier GAN</a>
</li>
</ul>
</div>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
<nav class="wy-nav-top" role="navigation" aria-label="top navigation">
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="..">Keras Documentation</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="..">Docs</a> »</li>
<li>Initializers</li>
<li class="wy-breadcrumbs-aside">
<a href="https://github.com/keras-team/keras/tree/master/docs"
class="icon icon-github"> Edit on GitHub</a>
</li>
</ul>
<hr/>
</div>
<div role="main">
<div class="section">
<h2 id="usage-of-initializers">Usage of initializers</h2>
<p>Initializations define the way to set the initial random weights of Keras layers.</p>
<p>The keyword arguments used for passing initializers to layers will depend on the layer. Usually it is simply <code>kernel_initializer</code> and <code>bias_initializer</code>:</p>
<pre><code class="python">model.add(Dense(64,
kernel_initializer='random_uniform',
bias_initializer='zeros'))
</code></pre>
<h2 id="available-initializers">Available initializers</h2>
<p>The following built-in initializers are available as part of the <code>keras.initializers</code> module:</p>
<p><span style="float:right;"><a href="https://github.com/keras-team/keras/blob/master/keras/initializers.py#L14">[source]</a></span></p>
<h3 id="initializer">Initializer</h3>
<pre><code class="python">keras.initializers.Initializer()
</code></pre>
<p>Initializer base class: all initializers inherit from this class.</p>
<hr />
<p><span style="float:right;"><a href="https://github.com/keras-team/keras/blob/master/keras/initializers.py#L33">[source]</a></span></p>
<h3 id="zeros">Zeros</h3>
<pre><code class="python">keras.initializers.Zeros()
</code></pre>
<p>Initializer that generates tensors initialized to 0.</p>
<hr />
<p><span style="float:right;"><a href="https://github.com/keras-team/keras/blob/master/keras/initializers.py#L41">[source]</a></span></p>
<h3 id="ones">Ones</h3>
<pre><code class="python">keras.initializers.Ones()
</code></pre>
<p>Initializer that generates tensors initialized to 1.</p>
<hr />
<p><span style="float:right;"><a href="https://github.com/keras-team/keras/blob/master/keras/initializers.py#L49">[source]</a></span></p>
<h3 id="constant">Constant</h3>
<pre><code class="python">keras.initializers.Constant(value=0)
</code></pre>
<p>Initializer that generates tensors initialized to a constant value.</p>
<p><strong>Arguments</strong></p>
<ul>
<li><strong>value</strong>: float; the value of the generator tensors.</li>
</ul>
<hr />
<p><span style="float:right;"><a href="https://github.com/keras-team/keras/blob/master/keras/initializers.py#L66">[source]</a></span></p>
<h3 id="randomnormal">RandomNormal</h3>
<pre><code class="python">keras.initializers.RandomNormal(mean=0.0, stddev=0.05, seed=None)
</code></pre>
<p>Initializer that generates tensors with a normal distribution.</p>
<p><strong>Arguments</strong></p>
<ul>
<li><strong>mean</strong>: a python scalar or a scalar tensor. Mean of the random values
to generate.</li>
<li><strong>stddev</strong>: a python scalar or a scalar tensor. Standard deviation of the
random values to generate.</li>
<li><strong>seed</strong>: A Python integer. Used to seed the random generator.</li>
</ul>
<hr />
<p><span style="float:right;"><a href="https://github.com/keras-team/keras/blob/master/keras/initializers.py#L97">[source]</a></span></p>
<h3 id="randomuniform">RandomUniform</h3>
<pre><code class="python">keras.initializers.RandomUniform(minval=-0.05, maxval=0.05, seed=None)
</code></pre>
<p>Initializer that generates tensors with a uniform distribution.</p>
<p><strong>Arguments</strong></p>
<ul>
<li><strong>minval</strong>: A python scalar or a scalar tensor. Lower bound of the range
of random values to generate.</li>
<li><strong>maxval</strong>: A python scalar or a scalar tensor. Upper bound of the range
of random values to generate. Defaults to 1 for float types.</li>
<li><strong>seed</strong>: A Python integer. Used to seed the random generator.</li>
</ul>
<hr />
<p><span style="float:right;"><a href="https://github.com/keras-team/keras/blob/master/keras/initializers.py#L128">[source]</a></span></p>
<h3 id="truncatednormal">TruncatedNormal</h3>
<pre><code class="python">keras.initializers.TruncatedNormal(mean=0.0, stddev=0.05, seed=None)
</code></pre>
<p>Initializer that generates a truncated normal distribution.</p>
<p>These values are similar to values from a <code>RandomNormal</code>
except that values more than two standard deviations from the mean
are discarded and redrawn. This is the recommended initializer for
neural network weights and filters.</p>
<p><strong>Arguments</strong></p>
<ul>
<li><strong>mean</strong>: a python scalar or a scalar tensor. Mean of the random values
to generate.</li>
<li><strong>stddev</strong>: a python scalar or a scalar tensor. Standard deviation of the
random values to generate.</li>
<li><strong>seed</strong>: A Python integer. Used to seed the random generator.</li>
</ul>
<hr />
<p><span style="float:right;"><a href="https://github.com/keras-team/keras/blob/master/keras/initializers.py#L164">[source]</a></span></p>
<h3 id="variancescaling">VarianceScaling</h3>
<pre><code class="python">keras.initializers.VarianceScaling(scale=1.0, mode='fan_in', distribution='normal', seed=None)
</code></pre>
<p>Initializer capable of adapting its scale to the shape of weights.</p>
<p>With <code>distribution="normal"</code>, samples are drawn from a truncated normal
distribution centered on zero, with <code>stddev = sqrt(scale / n)</code> where n is:</p>
<ul>
<li>number of input units in the weight tensor, if mode = "fan_in"</li>
<li>number of output units, if mode = "fan_out"</li>
<li>average of the numbers of input and output units, if mode = "fan_avg"</li>
</ul>
<p>With <code>distribution="uniform"</code>,
samples are drawn from a uniform distribution
within [-limit, limit], with <code>limit = sqrt(3 * scale / n)</code>.</p>
<p><strong>Arguments</strong></p>
<ul>
<li><strong>scale</strong>: Scaling factor (positive float).</li>
<li><strong>mode</strong>: One of "fan_in", "fan_out", "fan_avg".</li>
<li><strong>distribution</strong>: Random distribution to use. One of "normal", "uniform".</li>
<li><strong>seed</strong>: A Python integer. Used to seed the random generator.</li>
</ul>
<p><strong>Raises</strong></p>
<ul>
<li><strong>ValueError</strong>: In case of an invalid value for the "scale", mode" or
"distribution" arguments.</li>
</ul>
<hr />
<p><span style="float:right;"><a href="https://github.com/keras-team/keras/blob/master/keras/initializers.py#L241">[source]</a></span></p>
<h3 id="orthogonal">Orthogonal</h3>
<pre><code class="python">keras.initializers.Orthogonal(gain=1.0, seed=None)
</code></pre>
<p>Initializer that generates a random orthogonal matrix.</p>
<p><strong>Arguments</strong></p>
<ul>
<li><strong>gain</strong>: Multiplicative factor to apply to the orthogonal matrix.</li>
<li><strong>seed</strong>: A Python integer. Used to seed the random generator.</li>
</ul>
<p><strong>References</strong></p>
<ul>
<li><a href="http://arxiv.org/abs/1312.6120">Exact solutions to the nonlinear dynamics of learning in deep
linear neural networks</a></li>
</ul>
<hr />
<p><span style="float:right;"><a href="https://github.com/keras-team/keras/blob/master/keras/initializers.py#L281">[source]</a></span></p>
<h3 id="identity">Identity</h3>
<pre><code class="python">keras.initializers.Identity(gain=1.0)
</code></pre>
<p>Initializer that generates the identity matrix.</p>
<p>Only use for 2D matrices.
If the desired matrix is not square, it gets padded
with zeros for the additional rows/columns.</p>
<p><strong>Arguments</strong></p>
<ul>
<li><strong>gain</strong>: Multiplicative factor to apply to the identity matrix.</li>
</ul>
<hr />
<h3 id="lecun_uniform">lecun_uniform</h3>
<pre><code class="python">keras.initializers.lecun_uniform(seed=None)
</code></pre>
<p>LeCun uniform initializer.</p>
<p>It draws samples from a uniform distribution within [-limit, limit]
where <code>limit</code> is <code>sqrt(3 / fan_in)</code>
where <code>fan_in</code> is the number of input units in the weight tensor.</p>
<p><strong>Arguments</strong></p>
<ul>
<li><strong>seed</strong>: A Python integer. Used to seed the random generator.</li>
</ul>
<p><strong>Returns</strong></p>
<p>An initializer.</p>
<p><strong>References</strong></p>
<ul>
<li><a href="http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf">Efficient BackProp</a></li>
</ul>
<hr />
<h3 id="glorot_normal">glorot_normal</h3>
<pre><code class="python">keras.initializers.glorot_normal(seed=None)
</code></pre>
<p>Glorot normal initializer, also called Xavier normal initializer.</p>
<p>It draws samples from a truncated normal distribution centered on 0
with <code>stddev = sqrt(2 / (fan_in + fan_out))</code>
where <code>fan_in</code> is the number of input units in the weight tensor
and <code>fan_out</code> is the number of output units in the weight tensor.</p>
<p><strong>Arguments</strong></p>
<ul>
<li><strong>seed</strong>: A Python integer. Used to seed the random generator.</li>
</ul>
<p><strong>Returns</strong></p>
<p>An initializer.</p>
<p><strong>References</strong></p>
<ul>
<li><a href="http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf">Understanding the difficulty of training deep feedforward neural
networks</a></li>
</ul>
<hr />
<h3 id="glorot_uniform">glorot_uniform</h3>
<pre><code class="python">keras.initializers.glorot_uniform(seed=None)
</code></pre>
<p>Glorot uniform initializer, also called Xavier uniform initializer.</p>
<p>It draws samples from a uniform distribution within [-limit, limit]
where <code>limit</code> is <code>sqrt(6 / (fan_in + fan_out))</code>
where <code>fan_in</code> is the number of input units in the weight tensor
and <code>fan_out</code> is the number of output units in the weight tensor.</p>
<p><strong>Arguments</strong></p>
<ul>
<li><strong>seed</strong>: A Python integer. Used to seed the random generator.</li>
</ul>
<p><strong>Returns</strong></p>
<p>An initializer.</p>
<p><strong>References</strong></p>
<ul>
<li><a href="http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf">Understanding the difficulty of training deep feedforward neural
networks</a></li>
</ul>
<hr />
<h3 id="he_normal">he_normal</h3>
<pre><code class="python">keras.initializers.he_normal(seed=None)
</code></pre>
<p>He normal initializer.</p>
<p>It draws samples from a truncated normal distribution centered on 0
with <code>stddev = sqrt(2 / fan_in)</code>
where <code>fan_in</code> is the number of input units in the weight tensor.</p>
<p><strong>Arguments</strong></p>
<ul>
<li><strong>seed</strong>: A Python integer. Used to seed the random generator.</li>
</ul>
<p><strong>Returns</strong></p>
<p>An initializer.</p>
<p><strong>References</strong></p>
<ul>
<li><a href="http://arxiv.org/abs/1502.01852">Delving Deep into Rectifiers: Surpassing Human-Level Performance on
ImageNet Classification</a></li>
</ul>
<hr />
<h3 id="lecun_normal">lecun_normal</h3>
<pre><code class="python">keras.initializers.lecun_normal(seed=None)
</code></pre>
<p>LeCun normal initializer.</p>
<p>It draws samples from a truncated normal distribution centered on 0
with <code>stddev = sqrt(1 / fan_in)</code>
where <code>fan_in</code> is the number of input units in the weight tensor.</p>
<p><strong>Arguments</strong></p>
<ul>
<li><strong>seed</strong>: A Python integer. Used to seed the random generator.</li>
</ul>
<p><strong>Returns</strong></p>
<p>An initializer.</p>
<p><strong>References</strong></p>
<ul>
<li><a href="https://arxiv.org/abs/1706.02515">Self-Normalizing Neural Networks</a></li>
<li><a href="http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf">Efficient Backprop</a></li>
</ul>
<hr />
<h3 id="he_uniform">he_uniform</h3>
<pre><code class="python">keras.initializers.he_uniform(seed=None)
</code></pre>
<p>He uniform variance scaling initializer.</p>
<p>It draws samples from a uniform distribution within [-limit, limit]
where <code>limit</code> is <code>sqrt(6 / fan_in)</code>
where <code>fan_in</code> is the number of input units in the weight tensor.</p>
<p><strong>Arguments</strong></p>
<ul>
<li><strong>seed</strong>: A Python integer. Used to seed the random generator.</li>
</ul>
<p><strong>Returns</strong></p>
<p>An initializer.</p>
<p><strong>References</strong></p>
<ul>
<li><a href="http://arxiv.org/abs/1502.01852">Delving Deep into Rectifiers: Surpassing Human-Level Performance on
ImageNet Classification</a></li>
</ul>
<p>An initializer may be passed as a string (must match one of the available initializers above), or as a callable:</p>
<pre><code class="python">from keras import initializers
model.add(Dense(64, kernel_initializer=initializers.random_normal(stddev=0.01)))
# also works; will use the default parameters.
model.add(Dense(64, kernel_initializer='random_normal'))
</code></pre>
<h2 id="using-custom-initializers">Using custom initializers</h2>
<p>If passing a custom callable, then it must take the argument <code>shape</code> (shape of the variable to initialize) and <code>dtype</code> (dtype of generated values):</p>
<pre><code class="python">from keras import backend as K
def my_init(shape, dtype=None):
return K.random_normal(shape, dtype=dtype)
model.add(Dense(64, kernel_initializer=my_init))
</code></pre>
</div>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="../regularizers/" class="btn btn-neutral float-right" title="Regularizers">Next <span class="icon icon-circle-arrow-right"></span></a>
<a href="../backend/" class="btn btn-neutral" title="Backend"><span class="icon icon-circle-arrow-left"></span> Previous</a>
</div>
<hr/>
<div role="contentinfo">
<!-- Copyright etc -->
</div>
Built with <a href="https://www.mkdocs.org/">MkDocs</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<div class="rst-versions" role="note" aria-label="versions">
<span class="rst-current-version" data-toggle="rst-current-version">
<a href="http://github.com/keras-team/keras/" class="fa fa-github" style="float: left; color: #fcfcfc"> GitHub</a>
<span><a href="../backend/" style="color: #fcfcfc;">« Previous</a></span>
<span style="margin-left: 15px"><a href="../regularizers/" style="color: #fcfcfc">Next »</a></span>
</span>
</div>
<script>var base_url = '..';</script>
<script src="../js/theme.js" defer></script>
<script src="../search/main.js" defer></script>
<script type="text/javascript" defer>
window.onload = function () {
SphinxRtdTheme.Navigation.enable(true);
};
</script>
</body>
</html>
|