1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
|
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<link rel="canonical" href="http://keras.io/losses/">
<link rel="shortcut icon" href="../img/favicon.ico">
<title>Losses - Keras Documentation</title>
<link href='https://fonts.googleapis.com/css?family=Lato:400,700|Source+Sans+Pro:400,700|Inconsolata:400,700' rel='stylesheet' type='text/css'>
<link rel="stylesheet" href="../css/theme.css" type="text/css" />
<link rel="stylesheet" href="../css/theme_extra.css" type="text/css" />
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/styles/github.min.css">
<script>
// Current page data
var mkdocs_page_name = "Losses";
var mkdocs_page_input_path = "losses.md";
var mkdocs_page_url = "/losses/";
</script>
<script src="../js/jquery-2.1.1.min.js" defer></script>
<script src="../js/modernizr-2.8.3.min.js" defer></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/highlight.min.js"></script>
<script>hljs.initHighlightingOnLoad();</script>
<script>
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
})(window,document,'script','https://www.google-analytics.com/analytics.js','ga');
ga('create', 'UA-61785484-1', 'keras.io');
ga('send', 'pageview');
</script>
</head>
<body class="wy-body-for-nav" role="document">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side stickynav">
<div class="wy-side-scroll">
<a href="">
<div class="keras-logo">
<img src="/img/keras-logo-small.jpg" class="keras-logo-img">
Keras Documentation
</div>
</a>
<div class="wy-side-nav-search">
<div role="search">
<form id ="rtd-search-form" class="wy-form" action="../search.html" method="get">
<input type="text" name="q" placeholder="Search docs" title="Type search term here" />
</form>
</div>
</div>
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<ul>
<li class="toctree-l1"><a class="reference internal" href="..">Home</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../why-use-keras/">Why use Keras</a>
</li>
</ul>
<p class="caption"><span class="caption-text">Getting started</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../getting-started/sequential-model-guide/">Guide to the Sequential model</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../getting-started/functional-api-guide/">Guide to the Functional API</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../getting-started/faq/">FAQ</a>
</li>
</ul>
<p class="caption"><span class="caption-text">Models</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../models/about-keras-models/">About Keras models</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../models/sequential/">Sequential</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../models/model/">Model (functional API)</a>
</li>
</ul>
<p class="caption"><span class="caption-text">Layers</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../layers/about-keras-layers/">About Keras layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../layers/core/">Core Layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../layers/convolutional/">Convolutional Layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../layers/pooling/">Pooling Layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../layers/local/">Locally-connected Layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../layers/recurrent/">Recurrent Layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../layers/embeddings/">Embedding Layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../layers/merge/">Merge Layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../layers/advanced-activations/">Advanced Activations Layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../layers/normalization/">Normalization Layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../layers/noise/">Noise layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../layers/wrappers/">Layer wrappers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../layers/writing-your-own-keras-layers/">Writing your own Keras layers</a>
</li>
</ul>
<p class="caption"><span class="caption-text">Preprocessing</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../preprocessing/sequence/">Sequence Preprocessing</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../preprocessing/text/">Text Preprocessing</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../preprocessing/image/">Image Preprocessing</a>
</li>
</ul>
<ul class="current">
<li class="toctree-l1 current"><a class="reference internal current" href="./">Losses</a>
<ul class="current">
</ul>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../metrics/">Metrics</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../optimizers/">Optimizers</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../activations/">Activations</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../callbacks/">Callbacks</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../datasets/">Datasets</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../applications/">Applications</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../backend/">Backend</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../initializers/">Initializers</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../regularizers/">Regularizers</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../constraints/">Constraints</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../visualization/">Visualization</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../scikit-learn-api/">Scikit-learn API</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../utils/">Utils</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../contributing/">Contributing</a>
</li>
</ul>
<p class="caption"><span class="caption-text">Examples</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../examples/addition_rnn/">Addition RNN</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../examples/antirectifier/">Custom layer - antirectifier</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../examples/babi_rnn/">Baby RNN</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../examples/babi_memnn/">Baby MemNN</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../examples/cifar10_cnn/">CIFAR-10 CNN</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../examples/cifar10_resnet/">CIFAR-10 ResNet</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../examples/conv_filter_visualization/">Convolution filter visualization</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../examples/conv_lstm/">Convolutional LSTM</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../examples/deep_dream/">Deep Dream</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../examples/image_ocr/">Image OCR</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../examples/imdb_bidirectional_lstm/">Bidirectional LSTM</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../examples/imdb_cnn/">1D CNN for text classification</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../examples/imdb_cnn_lstm/">Sentiment classification CNN-LSTM</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../examples/imdb_fasttext/">Fasttext for text classification</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../examples/imdb_lstm/">Sentiment classification LSTM</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../examples/lstm_seq2seq/">Sequence to sequence - training</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../examples/lstm_seq2seq_restore/">Sequence to sequence - prediction</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../examples/lstm_stateful/">Stateful LSTM</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../examples/lstm_text_generation/">LSTM for text generation</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../examples/mnist_acgan/">Auxiliary Classifier GAN</a>
</li>
</ul>
</div>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
<nav class="wy-nav-top" role="navigation" aria-label="top navigation">
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="..">Keras Documentation</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="..">Docs</a> »</li>
<li>Losses</li>
<li class="wy-breadcrumbs-aside">
<a href="https://github.com/keras-team/keras/tree/master/docs"
class="icon icon-github"> Edit on GitHub</a>
</li>
</ul>
<hr/>
</div>
<div role="main">
<div class="section">
<h2 id="usage-of-loss-functions">Usage of loss functions</h2>
<p>A loss function (or objective function, or optimization score function) is one of the two parameters required to compile a model:</p>
<pre><code class="python">model.compile(loss='mean_squared_error', optimizer='sgd')
</code></pre>
<pre><code class="python">from keras import losses
model.compile(loss=losses.mean_squared_error, optimizer='sgd')
</code></pre>
<p>You can either pass the name of an existing loss function, or pass a TensorFlow/Theano symbolic function that returns a scalar for each data-point and takes the following two arguments:</p>
<ul>
<li><strong>y_true</strong>: True labels. TensorFlow/Theano tensor.</li>
<li><strong>y_pred</strong>: Predictions. TensorFlow/Theano tensor of the same shape as y_true.</li>
</ul>
<p>The actual optimized objective is the mean of the output array across all datapoints.</p>
<p>For a few examples of such functions, check out the <a href="https://github.com/keras-team/keras/blob/master/keras/losses.py">losses source</a>.</p>
<h2 id="available-loss-functions">Available loss functions</h2>
<h3 id="mean_squared_error">mean_squared_error</h3>
<pre><code class="python">keras.losses.mean_squared_error(y_true, y_pred)
</code></pre>
<hr />
<h3 id="mean_absolute_error">mean_absolute_error</h3>
<pre><code class="python">keras.losses.mean_absolute_error(y_true, y_pred)
</code></pre>
<hr />
<h3 id="mean_absolute_percentage_error">mean_absolute_percentage_error</h3>
<pre><code class="python">keras.losses.mean_absolute_percentage_error(y_true, y_pred)
</code></pre>
<hr />
<h3 id="mean_squared_logarithmic_error">mean_squared_logarithmic_error</h3>
<pre><code class="python">keras.losses.mean_squared_logarithmic_error(y_true, y_pred)
</code></pre>
<hr />
<h3 id="squared_hinge">squared_hinge</h3>
<pre><code class="python">keras.losses.squared_hinge(y_true, y_pred)
</code></pre>
<hr />
<h3 id="hinge">hinge</h3>
<pre><code class="python">keras.losses.hinge(y_true, y_pred)
</code></pre>
<hr />
<h3 id="categorical_hinge">categorical_hinge</h3>
<pre><code class="python">keras.losses.categorical_hinge(y_true, y_pred)
</code></pre>
<hr />
<h3 id="logcosh">logcosh</h3>
<pre><code class="python">keras.losses.logcosh(y_true, y_pred)
</code></pre>
<p>Logarithm of the hyperbolic cosine of the prediction error.</p>
<p><code>log(cosh(x))</code> is approximately equal to <code>(x ** 2) / 2</code> for small <code>x</code> and
to <code>abs(x) - log(2)</code> for large <code>x</code>. This means that 'logcosh' works mostly
like the mean squared error, but will not be so strongly affected by the
occasional wildly incorrect prediction.</p>
<p><strong>Arguments</strong></p>
<ul>
<li><strong>y_true</strong>: tensor of true targets.</li>
<li><strong>y_pred</strong>: tensor of predicted targets.</li>
</ul>
<p><strong>Returns</strong></p>
<p>Tensor with one scalar loss entry per sample.</p>
<hr />
<h3 id="huber_loss">huber_loss</h3>
<pre><code class="python">keras.losses.huber_loss(y_true, y_pred, delta=1.0)
</code></pre>
<hr />
<h3 id="categorical_crossentropy">categorical_crossentropy</h3>
<pre><code class="python">keras.losses.categorical_crossentropy(y_true, y_pred, from_logits=False, label_smoothing=0)
</code></pre>
<hr />
<h3 id="sparse_categorical_crossentropy">sparse_categorical_crossentropy</h3>
<pre><code class="python">keras.losses.sparse_categorical_crossentropy(y_true, y_pred, from_logits=False, axis=-1)
</code></pre>
<hr />
<h3 id="binary_crossentropy">binary_crossentropy</h3>
<pre><code class="python">keras.losses.binary_crossentropy(y_true, y_pred, from_logits=False, label_smoothing=0)
</code></pre>
<hr />
<h3 id="kullback_leibler_divergence">kullback_leibler_divergence</h3>
<pre><code class="python">keras.losses.kullback_leibler_divergence(y_true, y_pred)
</code></pre>
<hr />
<h3 id="poisson">poisson</h3>
<pre><code class="python">keras.losses.poisson(y_true, y_pred)
</code></pre>
<hr />
<h3 id="cosine_proximity">cosine_proximity</h3>
<pre><code class="python">keras.losses.cosine_proximity(y_true, y_pred, axis=-1)
</code></pre>
<hr />
<h3 id="is_categorical_crossentropy">is_categorical_crossentropy</h3>
<pre><code class="python">keras.losses.is_categorical_crossentropy(loss)
</code></pre>
<hr />
<p><strong>Note</strong>: when using the <code>categorical_crossentropy</code> loss, your targets should be in categorical format (e.g. if you have 10 classes, the target for each sample should be a 10-dimensional vector that is all-zeros except for a 1 at the index corresponding to the class of the sample). In order to convert <em>integer targets</em> into <em>categorical targets</em>, you can use the Keras utility <code>to_categorical</code>:</p>
<pre><code class="python">from keras.utils import to_categorical
categorical_labels = to_categorical(int_labels, num_classes=None)
</code></pre>
<p>When using the <code>sparse_categorical_crossentropy</code> loss, your targets should be <em>integer targets</em>.
If you have categorical targets, you should use <code>categorical_crossentropy</code>.</p>
<p><code>categorical_crossentropy</code> is another term for <a href="http://wiki.fast.ai/index.php/Log_Loss">multi-class log loss</a>. </p>
</div>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="../metrics/" class="btn btn-neutral float-right" title="Metrics">Next <span class="icon icon-circle-arrow-right"></span></a>
<a href="../preprocessing/image/" class="btn btn-neutral" title="Image Preprocessing"><span class="icon icon-circle-arrow-left"></span> Previous</a>
</div>
<hr/>
<div role="contentinfo">
<!-- Copyright etc -->
</div>
Built with <a href="https://www.mkdocs.org/">MkDocs</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<div class="rst-versions" role="note" aria-label="versions">
<span class="rst-current-version" data-toggle="rst-current-version">
<a href="http://github.com/keras-team/keras/" class="fa fa-github" style="float: left; color: #fcfcfc"> GitHub</a>
<span><a href="../preprocessing/image/" style="color: #fcfcfc;">« Previous</a></span>
<span style="margin-left: 15px"><a href="../metrics/" style="color: #fcfcfc">Next »</a></span>
</span>
</div>
<script>var base_url = '..';</script>
<script src="../js/theme.js" defer></script>
<script src="../search/main.js" defer></script>
<script type="text/javascript" defer>
window.onload = function () {
SphinxRtdTheme.Navigation.enable(true);
};
</script>
</body>
</html>
|