1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
|
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<link rel="canonical" href="http://keras.io/models/sequential/">
<link rel="shortcut icon" href="../../img/favicon.ico">
<title>Sequential - Keras Documentation</title>
<link href='https://fonts.googleapis.com/css?family=Lato:400,700|Source+Sans+Pro:400,700|Inconsolata:400,700' rel='stylesheet' type='text/css'>
<link rel="stylesheet" href="../../css/theme.css" type="text/css" />
<link rel="stylesheet" href="../../css/theme_extra.css" type="text/css" />
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/styles/github.min.css">
<script>
// Current page data
var mkdocs_page_name = "Sequential";
var mkdocs_page_input_path = "models/sequential.md";
var mkdocs_page_url = "/models/sequential/";
</script>
<script src="../../js/jquery-2.1.1.min.js" defer></script>
<script src="../../js/modernizr-2.8.3.min.js" defer></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/highlight.min.js"></script>
<script>hljs.initHighlightingOnLoad();</script>
<script>
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
})(window,document,'script','https://www.google-analytics.com/analytics.js','ga');
ga('create', 'UA-61785484-1', 'keras.io');
ga('send', 'pageview');
</script>
</head>
<body class="wy-body-for-nav" role="document">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side stickynav">
<div class="wy-side-scroll">
<a href="">
<div class="keras-logo">
<img src="/img/keras-logo-small.jpg" class="keras-logo-img">
Keras Documentation
</div>
</a>
<div class="wy-side-nav-search">
<div role="search">
<form id ="rtd-search-form" class="wy-form" action="../../search.html" method="get">
<input type="text" name="q" placeholder="Search docs" title="Type search term here" />
</form>
</div>
</div>
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<ul>
<li class="toctree-l1"><a class="reference internal" href="../..">Home</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../why-use-keras/">Why use Keras</a>
</li>
</ul>
<p class="caption"><span class="caption-text">Getting started</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../getting-started/sequential-model-guide/">Guide to the Sequential model</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../getting-started/functional-api-guide/">Guide to the Functional API</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../getting-started/faq/">FAQ</a>
</li>
</ul>
<p class="caption"><span class="caption-text">Models</span></p>
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="../about-keras-models/">About Keras models</a>
</li>
<li class="toctree-l1 current"><a class="reference internal current" href="./">Sequential</a>
<ul class="current">
<li class="toctree-l2"><a class="reference internal" href="#sequential-model-methods">Sequential model methods</a>
<ul>
<li class="toctree-l3"><a class="reference internal" href="#compile">compile</a>
</li>
<li class="toctree-l3"><a class="reference internal" href="#fit">fit</a>
</li>
<li class="toctree-l3"><a class="reference internal" href="#evaluate">evaluate</a>
</li>
<li class="toctree-l3"><a class="reference internal" href="#predict">predict</a>
</li>
<li class="toctree-l3"><a class="reference internal" href="#train_on_batch">train_on_batch</a>
</li>
<li class="toctree-l3"><a class="reference internal" href="#test_on_batch">test_on_batch</a>
</li>
<li class="toctree-l3"><a class="reference internal" href="#predict_on_batch">predict_on_batch</a>
</li>
<li class="toctree-l3"><a class="reference internal" href="#fit_generator">fit_generator</a>
</li>
<li class="toctree-l3"><a class="reference internal" href="#evaluate_generator">evaluate_generator</a>
</li>
<li class="toctree-l3"><a class="reference internal" href="#predict_generator">predict_generator</a>
</li>
<li class="toctree-l3"><a class="reference internal" href="#get_layer">get_layer</a>
</li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../model/">Model (functional API)</a>
</li>
</ul>
<p class="caption"><span class="caption-text">Layers</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../layers/about-keras-layers/">About Keras layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../layers/core/">Core Layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../layers/convolutional/">Convolutional Layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../layers/pooling/">Pooling Layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../layers/local/">Locally-connected Layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../layers/recurrent/">Recurrent Layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../layers/embeddings/">Embedding Layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../layers/merge/">Merge Layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../layers/advanced-activations/">Advanced Activations Layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../layers/normalization/">Normalization Layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../layers/noise/">Noise layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../layers/wrappers/">Layer wrappers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../layers/writing-your-own-keras-layers/">Writing your own Keras layers</a>
</li>
</ul>
<p class="caption"><span class="caption-text">Preprocessing</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../preprocessing/sequence/">Sequence Preprocessing</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../preprocessing/text/">Text Preprocessing</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../preprocessing/image/">Image Preprocessing</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../losses/">Losses</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../metrics/">Metrics</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../optimizers/">Optimizers</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../activations/">Activations</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../callbacks/">Callbacks</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../datasets/">Datasets</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../applications/">Applications</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../backend/">Backend</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../initializers/">Initializers</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../regularizers/">Regularizers</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../constraints/">Constraints</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../visualization/">Visualization</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../scikit-learn-api/">Scikit-learn API</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../utils/">Utils</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../contributing/">Contributing</a>
</li>
</ul>
<p class="caption"><span class="caption-text">Examples</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../examples/addition_rnn/">Addition RNN</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../examples/antirectifier/">Custom layer - antirectifier</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../examples/babi_rnn/">Baby RNN</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../examples/babi_memnn/">Baby MemNN</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../examples/cifar10_cnn/">CIFAR-10 CNN</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../examples/cifar10_resnet/">CIFAR-10 ResNet</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../examples/conv_filter_visualization/">Convolution filter visualization</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../examples/conv_lstm/">Convolutional LSTM</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../examples/deep_dream/">Deep Dream</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../examples/image_ocr/">Image OCR</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../examples/imdb_bidirectional_lstm/">Bidirectional LSTM</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../examples/imdb_cnn/">1D CNN for text classification</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../examples/imdb_cnn_lstm/">Sentiment classification CNN-LSTM</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../examples/imdb_fasttext/">Fasttext for text classification</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../examples/imdb_lstm/">Sentiment classification LSTM</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../examples/lstm_seq2seq/">Sequence to sequence - training</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../examples/lstm_seq2seq_restore/">Sequence to sequence - prediction</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../examples/lstm_stateful/">Stateful LSTM</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../examples/lstm_text_generation/">LSTM for text generation</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../examples/mnist_acgan/">Auxiliary Classifier GAN</a>
</li>
</ul>
</div>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
<nav class="wy-nav-top" role="navigation" aria-label="top navigation">
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="../..">Keras Documentation</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="../..">Docs</a> »</li>
<li>Models »</li>
<li>Sequential</li>
<li class="wy-breadcrumbs-aside">
<a href="https://github.com/keras-team/keras/tree/master/docs"
class="icon icon-github"> Edit on GitHub</a>
</li>
</ul>
<hr/>
</div>
<div role="main">
<div class="section">
<h1 id="the-sequential-model-api">The Sequential model API</h1>
<p>To get started, read <a href="/getting-started/sequential-model-guide">this guide to the Keras Sequential model</a>.</p>
<hr />
<h2 id="sequential-model-methods">Sequential model methods</h2>
<h3 id="compile">compile</h3>
<pre><code class="python">compile(optimizer, loss=None, metrics=None, loss_weights=None, sample_weight_mode=None, weighted_metrics=None, target_tensors=None)
</code></pre>
<p>Configures the model for training.</p>
<p><strong>Arguments</strong></p>
<ul>
<li><strong>optimizer</strong>: String (name of optimizer) or optimizer instance.
See <a href="/optimizers">optimizers</a>.</li>
<li><strong>loss</strong>: String (name of objective function) or objective function or
<code>Loss</code> instance. See <a href="/losses">losses</a>.
If the model has multiple outputs, you can use a different loss
on each output by passing a dictionary or a list of losses.
The loss value that will be minimized by the model
will then be the sum of all individual losses.</li>
<li><strong>metrics</strong>: List of metrics to be evaluated by the model
during training and testing. Typically you will use
<code>metrics=['accuracy']</code>. To specify different metrics for different
outputs of a multi-output model, you could also pass a dictionary,
such as
<code>metrics={'output_a': 'accuracy', 'output_b': ['accuracy', 'mse']}</code>.
You can also pass a list (len = len(outputs)) of lists of metrics
such as <code>metrics=[['accuracy'], ['accuracy', 'mse']]</code> or
<code>metrics=['accuracy', ['accuracy', 'mse']]</code>.</li>
<li><strong>loss_weights</strong>: Optional list or dictionary specifying scalar
coefficients (Python floats) to weight the loss contributions
of different model outputs.
The loss value that will be minimized by the model
will then be the <em>weighted sum</em> of all individual losses,
weighted by the <code>loss_weights</code> coefficients.
If a list, it is expected to have a 1:1 mapping
to the model's outputs. If a dict, it is expected to map
output names (strings) to scalar coefficients.</li>
<li><strong>sample_weight_mode</strong>: If you need to do timestep-wise
sample weighting (2D weights), set this to <code>"temporal"</code>.
<code>None</code> defaults to sample-wise weights (1D).
If the model has multiple outputs, you can use a different
<code>sample_weight_mode</code> on each output by passing a
dictionary or a list of modes.</li>
<li><strong>weighted_metrics</strong>: List of metrics to be evaluated and weighted
by sample_weight or class_weight during training and testing.</li>
<li><strong>target_tensors</strong>: By default, Keras will create placeholders for the
model's target, which will be fed with the target data during
training. If instead you would like to use your own
target tensors (in turn, Keras will not expect external
Numpy data for these targets at training time), you
can specify them via the <code>target_tensors</code> argument. It can be
a single tensor (for a single-output model), a list of tensors,
or a dict mapping output names to target tensors.</li>
<li><strong>**kwargs</strong>: When using the Theano/CNTK backends, these arguments
are passed into <code>K.function</code>.
When using the TensorFlow backend,
these arguments are passed into <code>tf.Session.run</code>.</li>
</ul>
<p><strong>Raises</strong></p>
<ul>
<li><strong>ValueError</strong>: In case of invalid arguments for
<code>optimizer</code>, <code>loss</code>, <code>metrics</code> or <code>sample_weight_mode</code>.</li>
</ul>
<hr />
<h3 id="fit">fit</h3>
<pre><code class="python">fit(x=None, y=None, batch_size=None, epochs=1, verbose=1, callbacks=None, validation_split=0.0, validation_data=None, shuffle=True, class_weight=None, sample_weight=None, initial_epoch=0, steps_per_epoch=None, validation_steps=None, validation_freq=1, max_queue_size=10, workers=1, use_multiprocessing=False)
</code></pre>
<p>Trains the model for a fixed number of epochs (iterations on a dataset).</p>
<p><strong>Arguments</strong></p>
<ul>
<li><strong>x</strong>: Input data. It could be:<ul>
<li>A Numpy array (or array-like), or a list of arrays
(in case the model has multiple inputs).</li>
<li>A dict mapping input names to the corresponding
array/tensors, if the model has named inputs.</li>
<li>A generator or <code>keras.utils.Sequence</code> returning
<code>(inputs, targets)</code> or <code>(inputs, targets, sample weights)</code>.</li>
<li>None (default) if feeding from framework-native
tensors (e.g. TensorFlow data tensors).</li>
</ul>
</li>
<li><strong>y</strong>: Target data. Like the input data <code>x</code>,
it could be either Numpy array(s), framework-native tensor(s),
list of Numpy arrays (if the model has multiple outputs) or
None (default) if feeding from framework-native tensors
(e.g. TensorFlow data tensors).
If output layers in the model are named, you can also pass a
dictionary mapping output names to Numpy arrays.
If <code>x</code> is a generator, or <code>keras.utils.Sequence</code> instance,
<code>y</code> should not be specified (since targets will be obtained
from <code>x</code>).</li>
<li><strong>batch_size</strong>: Integer or <code>None</code>.
Number of samples per gradient update.
If unspecified, <code>batch_size</code> will default to 32.
Do not specify the <code>batch_size</code> if your data is in the
form of symbolic tensors, generators, or <code>Sequence</code> instances
(since they generate batches).</li>
<li><strong>epochs</strong>: Integer. Number of epochs to train the model.
An epoch is an iteration over the entire <code>x</code> and <code>y</code>
data provided.
Note that in conjunction with <code>initial_epoch</code>,
<code>epochs</code> is to be understood as "final epoch".
The model is not trained for a number of iterations
given by <code>epochs</code>, but merely until the epoch
of index <code>epochs</code> is reached.</li>
<li><strong>verbose</strong>: Integer. 0, 1, or 2. Verbosity mode.
0 = silent, 1 = progress bar, 2 = one line per epoch.</li>
<li><strong>callbacks</strong>: List of <code>keras.callbacks.Callback</code> instances.
List of callbacks to apply during training and validation
(if ).
See <a href="/callbacks">callbacks</a>.</li>
<li><strong>validation_split</strong>: Float between 0 and 1.
Fraction of the training data to be used as validation data.
The model will set apart this fraction of the training data,
will not train on it, and will evaluate
the loss and any model metrics
on this data at the end of each epoch.
The validation data is selected from the last samples
in the <code>x</code> and <code>y</code> data provided, before shuffling.
This argument is not supported when <code>x</code> is a generator or
<code>Sequence</code> instance.</li>
<li>
<p><strong>validation_data</strong>: Data on which to evaluate
the loss and any model metrics at the end of each epoch.
The model will not be trained on this data.
<code>validation_data</code> will override <code>validation_split</code>.
<code>validation_data</code> could be:
- tuple <code>(x_val, y_val)</code> of Numpy arrays or tensors
- tuple <code>(x_val, y_val, val_sample_weights)</code> of Numpy arrays
- dataset or a dataset iterator</p>
<p>For the first two cases, <code>batch_size</code> must be provided.
For the last case, <code>validation_steps</code> must be provided.</p>
</li>
<li>
<p><strong>shuffle</strong>: Boolean (whether to shuffle the training data
before each epoch) or str (for 'batch').
'batch' is a special option for dealing with the
limitations of HDF5 data; it shuffles in batch-sized chunks.
Has no effect when <code>steps_per_epoch</code> is not <code>None</code>.</p>
</li>
<li><strong>class_weight</strong>: Optional dictionary mapping class indices (integers)
to a weight (float) value, used for weighting the loss function
(during training only).
This can be useful to tell the model to
"pay more attention" to samples from
an under-represented class.</li>
<li><strong>sample_weight</strong>: Optional Numpy array of weights for
the training samples, used for weighting the loss function
(during training only). You can either pass a flat (1D)
Numpy array with the same length as the input samples
(1:1 mapping between weights and samples),
or in the case of temporal data,
you can pass a 2D array with shape
<code>(samples, sequence_length)</code>,
to apply a different weight to every timestep of every sample.
In this case you should make sure to specify
<code>sample_weight_mode="temporal"</code> in <code>compile()</code>. This argument
is not supported when <code>x</code> generator, or <code>Sequence</code> instance,
instead provide the sample_weights as the third element of <code>x</code>.</li>
<li><strong>initial_epoch</strong>: Integer.
Epoch at which to start training
(useful for resuming a previous training run).</li>
<li><strong>steps_per_epoch</strong>: Integer or <code>None</code>.
Total number of steps (batches of samples)
before declaring one epoch finished and starting the
next epoch. When training with input tensors such as
TensorFlow data tensors, the default <code>None</code> is equal to
the number of samples in your dataset divided by
the batch size, or 1 if that cannot be determined.</li>
<li><strong>validation_steps</strong>: Only relevant if <code>steps_per_epoch</code>
is specified. Total number of steps (batches of samples)
to validate before stopping.</li>
<li><strong>validation_steps</strong>: Only relevant if <code>validation_data</code> is provided
and is a generator. Total number of steps (batches of samples)
to draw before stopping when performing validation at the end
of every epoch.</li>
<li><strong>validation_freq</strong>: Only relevant if validation data is provided. Integer
or list/tuple/set. If an integer, specifies how many training
epochs to run before a new validation run is performed, e.g.
<code>validation_freq=2</code> runs validation every 2 epochs. If a list,
tuple, or set, specifies the epochs on which to run validation,
e.g. <code>validation_freq=[1, 2, 10]</code> runs validation at the end
of the 1st, 2nd, and 10th epochs.</li>
<li><strong>max_queue_size</strong>: Integer. Used for generator or <code>keras.utils.Sequence</code>
input only. Maximum size for the generator queue.
If unspecified, <code>max_queue_size</code> will default to 10.</li>
<li><strong>workers</strong>: Integer. Used for generator or <code>keras.utils.Sequence</code> input
only. Maximum number of processes to spin up
when using process-based threading. If unspecified, <code>workers</code>
will default to 1. If 0, will execute the generator on the main
thread.</li>
<li><strong>use_multiprocessing</strong>: Boolean. Used for generator or
<code>keras.utils.Sequence</code> input only. If <code>True</code>, use process-based
threading. If unspecified, <code>use_multiprocessing</code> will default to
<code>False</code>. Note that because this implementation relies on
multiprocessing, you should not pass non-picklable arguments to
the generator as they can't be passed easily to children processes.</li>
<li><strong>**kwargs</strong>: Used for backwards compatibility.</li>
</ul>
<p><strong>Returns</strong></p>
<p>A <code>History</code> object. Its <code>History.history</code> attribute is
a record of training loss values and metrics values
at successive epochs, as well as validation loss values
and validation metrics values (if applicable).</p>
<p><strong>Raises</strong></p>
<ul>
<li><strong>RuntimeError</strong>: If the model was never compiled.</li>
<li><strong>ValueError</strong>: In case of mismatch between the provided input data
and what the model expects.</li>
</ul>
<hr />
<h3 id="evaluate">evaluate</h3>
<pre><code class="python">evaluate(x=None, y=None, batch_size=None, verbose=1, sample_weight=None, steps=None, callbacks=None, max_queue_size=10, workers=1, use_multiprocessing=False)
</code></pre>
<p>Returns the loss value & metrics values for the model in test mode.</p>
<p>Computation is done in batches.</p>
<p><strong>Arguments</strong></p>
<ul>
<li><strong>x</strong>: Input data. It could be:<ul>
<li>A Numpy array (or array-like), or a list of arrays
(in case the model has multiple inputs).</li>
<li>A dict mapping input names to the corresponding
array/tensors, if the model has named inputs.</li>
<li>A generator or <code>keras.utils.Sequence</code> returning
<code>(inputs, targets)</code> or <code>(inputs, targets, sample weights)</code>.</li>
<li>None (default) if feeding from framework-native
tensors (e.g. TensorFlow data tensors).</li>
</ul>
</li>
<li><strong>y</strong>: Target data. Like the input data <code>x</code>,
it could be either Numpy array(s), framework-native tensor(s),
list of Numpy arrays (if the model has multiple outputs) or
None (default) if feeding from framework-native tensors
(e.g. TensorFlow data tensors).
If output layers in the model are named, you can also pass a
dictionary mapping output names to Numpy arrays.
If <code>x</code> is a generator, or <code>keras.utils.Sequence</code> instance,
<code>y</code> should not be specified (since targets will be obtained
from <code>x</code>).</li>
<li><strong>batch_size</strong>: Integer or <code>None</code>.
Number of samples per gradient update.
If unspecified, <code>batch_size</code> will default to 32.
Do not specify the <code>batch_size</code> is your data is in the
form of symbolic tensors, generators, or
<code>keras.utils.Sequence</code> instances (since they generate batches).</li>
<li><strong>verbose</strong>: 0 or 1. Verbosity mode.
0 = silent, 1 = progress bar.</li>
<li><strong>sample_weight</strong>: Optional Numpy array of weights for
the test samples, used for weighting the loss function.
You can either pass a flat (1D)
Numpy array with the same length as the input samples
(1:1 mapping between weights and samples),
or in the case of temporal data,
you can pass a 2D array with shape
<code>(samples, sequence_length)</code>,
to apply a different weight to every timestep of every sample.
In this case you should make sure to specify
<code>sample_weight_mode="temporal"</code> in <code>compile()</code>.</li>
<li><strong>steps</strong>: Integer or <code>None</code>.
Total number of steps (batches of samples)
before declaring the evaluation round finished.
Ignored with the default value of <code>None</code>.</li>
<li><strong>callbacks</strong>: List of <code>keras.callbacks.Callback</code> instances.
List of callbacks to apply during evaluation.
See <a href="/callbacks">callbacks</a>.</li>
<li><strong>max_queue_size</strong>: Integer. Used for generator or <code>keras.utils.Sequence</code>
input only. Maximum size for the generator queue.
If unspecified, <code>max_queue_size</code> will default to 10.</li>
<li><strong>workers</strong>: Integer. Used for generator or <code>keras.utils.Sequence</code> input
only. Maximum number of processes to spin up when using
process-based threading. If unspecified, <code>workers</code> will default
to 1. If 0, will execute the generator on the main thread.</li>
<li><strong>use_multiprocessing</strong>: Boolean. Used for generator or
<code>keras.utils.Sequence</code> input only. If <code>True</code>, use process-based
threading. If unspecified, <code>use_multiprocessing</code> will default to
<code>False</code>. Note that because this implementation relies on
multiprocessing, you should not pass non-picklable arguments to
the generator as they can't be passed easily to children processes.</li>
</ul>
<p><strong>Raises</strong></p>
<ul>
<li><strong>ValueError</strong>: in case of invalid arguments.</li>
</ul>
<p><strong>Returns</strong></p>
<p>Scalar test loss (if the model has a single output and no metrics)
or list of scalars (if the model has multiple outputs
and/or metrics). The attribute <code>model.metrics_names</code> will give you
the display labels for the scalar outputs.</p>
<hr />
<h3 id="predict">predict</h3>
<pre><code class="python">predict(x, batch_size=None, verbose=0, steps=None, callbacks=None, max_queue_size=10, workers=1, use_multiprocessing=False)
</code></pre>
<p>Generates output predictions for the input samples.</p>
<p>Computation is done in batches.</p>
<p><strong>Arguments</strong></p>
<ul>
<li><strong>x</strong>: Input data. It could be:<ul>
<li>A Numpy array (or array-like), or a list of arrays
(in case the model has multiple inputs).</li>
<li>A dict mapping input names to the corresponding
array/tensors, if the model has named inputs.</li>
<li>A generator or <code>keras.utils.Sequence</code> returning
<code>(inputs, targets)</code> or <code>(inputs, targets, sample weights)</code>.</li>
<li>None (default) if feeding from framework-native
tensors (e.g. TensorFlow data tensors).</li>
</ul>
</li>
<li><strong>batch_size</strong>: Integer or <code>None</code>.
Number of samples per gradient update.
If unspecified, <code>batch_size</code> will default to 32.
Do not specify the <code>batch_size</code> is your data is in the
form of symbolic tensors, generators, or
<code>keras.utils.Sequence</code> instances (since they generate batches).</li>
<li><strong>verbose</strong>: Verbosity mode, 0 or 1.</li>
<li><strong>steps</strong>: Total number of steps (batches of samples)
before declaring the prediction round finished.
Ignored with the default value of <code>None</code>.</li>
<li><strong>callbacks</strong>: List of <code>keras.callbacks.Callback</code> instances.
List of callbacks to apply during prediction.
See <a href="/callbacks">callbacks</a>.</li>
<li><strong>max_queue_size</strong>: Integer. Used for generator or <code>keras.utils.Sequence</code>
input only. Maximum size for the generator queue.
If unspecified, <code>max_queue_size</code> will default to 10.</li>
<li><strong>workers</strong>: Integer. Used for generator or <code>keras.utils.Sequence</code> input
only. Maximum number of processes to spin up when using
process-based threading. If unspecified, <code>workers</code> will default
to 1. If 0, will execute the generator on the main thread.</li>
<li><strong>use_multiprocessing</strong>: Boolean. Used for generator or
<code>keras.utils.Sequence</code> input only. If <code>True</code>, use process-based
threading. If unspecified, <code>use_multiprocessing</code> will default to
<code>False</code>. Note that because this implementation relies on
multiprocessing, you should not pass non-picklable arguments to
the generator as they can't be passed easily to children processes.</li>
</ul>
<p><strong>Returns</strong></p>
<p>Numpy array(s) of predictions.</p>
<p><strong>Raises</strong></p>
<ul>
<li><strong>ValueError</strong>: In case of mismatch between the provided
input data and the model's expectations,
or in case a stateful model receives a number of samples
that is not a multiple of the batch size.</li>
</ul>
<hr />
<h3 id="train_on_batch">train_on_batch</h3>
<pre><code class="python">train_on_batch(x, y, sample_weight=None, class_weight=None, reset_metrics=True)
</code></pre>
<p>Runs a single gradient update on a single batch of data.</p>
<p><strong>Arguments</strong></p>
<ul>
<li><strong>x</strong>: Numpy array of training data,
or list of Numpy arrays if the model has multiple inputs.
If all inputs in the model are named,
you can also pass a dictionary
mapping input names to Numpy arrays.</li>
<li><strong>y</strong>: Numpy array of target data,
or list of Numpy arrays if the model has multiple outputs.
If all outputs in the model are named,
you can also pass a dictionary
mapping output names to Numpy arrays.</li>
<li><strong>sample_weight</strong>: Optional array of the same length as x, containing
weights to apply to the model's loss for each sample.
In the case of temporal data, you can pass a 2D array
with shape (samples, sequence_length),
to apply a different weight to every timestep of every sample.
In this case you should make sure to specify
sample_weight_mode="temporal" in compile().</li>
<li><strong>class_weight</strong>: Optional dictionary mapping
class indices (integers) to
a weight (float) to apply to the model's loss for the samples
from this class during training.
This can be useful to tell the model to "pay more attention" to
samples from an under-represented class.</li>
<li><strong>reset_metrics</strong>: If <code>True</code>, the metrics returned will be only for this
batch. If <code>False</code>, the metrics will be statefully accumulated across
batches.</li>
</ul>
<p><strong>Returns</strong></p>
<p>Scalar training loss
(if the model has a single output and no metrics)
or list of scalars (if the model has multiple outputs
and/or metrics). The attribute <code>model.metrics_names</code> will give you
the display labels for the scalar outputs.</p>
<hr />
<h3 id="test_on_batch">test_on_batch</h3>
<pre><code class="python">test_on_batch(x, y, sample_weight=None, reset_metrics=True)
</code></pre>
<p>Test the model on a single batch of samples.</p>
<p><strong>Arguments</strong></p>
<ul>
<li><strong>x</strong>: Numpy array of test data,
or list of Numpy arrays if the model has multiple inputs.
If all inputs in the model are named,
you can also pass a dictionary
mapping input names to Numpy arrays.</li>
<li><strong>y</strong>: Numpy array of target data,
or list of Numpy arrays if the model has multiple outputs.
If all outputs in the model are named,
you can also pass a dictionary
mapping output names to Numpy arrays.</li>
<li><strong>sample_weight</strong>: Optional array of the same length as x, containing
weights to apply to the model's loss for each sample.
In the case of temporal data, you can pass a 2D array
with shape (samples, sequence_length),
to apply a different weight to every timestep of every sample.
In this case you should make sure to specify
sample_weight_mode="temporal" in compile().</li>
<li><strong>reset_metrics</strong>: If <code>True</code>, the metrics returned will be only for this
batch. If <code>False</code>, the metrics will be statefully accumulated across
batches.</li>
</ul>
<p><strong>Returns</strong></p>
<p>Scalar test loss (if the model has a single output and no metrics)
or list of scalars (if the model has multiple outputs
and/or metrics). The attribute <code>model.metrics_names</code> will give you
the display labels for the scalar outputs.</p>
<hr />
<h3 id="predict_on_batch">predict_on_batch</h3>
<pre><code class="python">predict_on_batch(x)
</code></pre>
<p>Returns predictions for a single batch of samples.</p>
<p><strong>Arguments</strong></p>
<ul>
<li><strong>x</strong>: Input samples, as a Numpy array.</li>
</ul>
<p><strong>Returns</strong></p>
<p>Numpy array(s) of predictions.</p>
<hr />
<h3 id="fit_generator">fit_generator</h3>
<pre><code class="python">fit_generator(generator, steps_per_epoch=None, epochs=1, verbose=1, callbacks=None, validation_data=None, validation_steps=None, validation_freq=1, class_weight=None, max_queue_size=10, workers=1, use_multiprocessing=False, shuffle=True, initial_epoch=0)
</code></pre>
<p>Trains the model on data generated batch-by-batch by a Python generator
(or an instance of <code>Sequence</code>).</p>
<p>The generator is run in parallel to the model, for efficiency.
For instance, this allows you to do real-time data augmentation
on images on CPU in parallel to training your model on GPU.</p>
<p>The use of <code>keras.utils.Sequence</code> guarantees the ordering
and guarantees the single use of every input per epoch when
using <code>use_multiprocessing=True</code>.</p>
<p><strong>Arguments</strong></p>
<ul>
<li>
<p><strong>generator</strong>: A generator or an instance of <code>Sequence</code>
(<code>keras.utils.Sequence</code>) object in order to avoid
duplicate data when using multiprocessing.
The output of the generator must be either</p>
<ul>
<li>a tuple <code>(inputs, targets)</code></li>
<li>a tuple <code>(inputs, targets, sample_weights)</code>.</li>
</ul>
<p>This tuple (a single output of the generator) makes a single
batch. Therefore, all arrays in this tuple must have the same
length (equal to the size of this batch). Different batches may
have different sizes. For example, the last batch of the epoch
is commonly smaller than the others, if the size of the dataset
is not divisible by the batch size.
The generator is expected to loop over its data
indefinitely. An epoch finishes when <code>steps_per_epoch</code>
batches have been seen by the model.</p>
</li>
<li>
<p><strong>steps_per_epoch</strong>: Integer.
Total number of steps (batches of samples)
to yield from <code>generator</code> before declaring one epoch
finished and starting the next epoch. It should typically
be equal to <code>ceil(num_samples / batch_size)</code>
Optional for <code>Sequence</code>: if unspecified, will use
the <code>len(generator)</code> as a number of steps.</p>
</li>
<li><strong>epochs</strong>: Integer. Number of epochs to train the model.
An epoch is an iteration over the entire data provided,
as defined by <code>steps_per_epoch</code>.
Note that in conjunction with <code>initial_epoch</code>,
<code>epochs</code> is to be understood as "final epoch".
The model is not trained for a number of iterations
given by <code>epochs</code>, but merely until the epoch
of index <code>epochs</code> is reached.</li>
<li><strong>verbose</strong>: Integer. 0, 1, or 2. Verbosity mode.
0 = silent, 1 = progress bar, 2 = one line per epoch.</li>
<li><strong>callbacks</strong>: List of <code>keras.callbacks.Callback</code> instances.
List of callbacks to apply during training.
See <a href="/callbacks">callbacks</a>.</li>
<li>
<p><strong>validation_data</strong>: This can be either</p>
<ul>
<li>a generator or a <code>Sequence</code> object for the validation data</li>
<li>tuple <code>(x_val, y_val)</code></li>
<li>tuple <code>(x_val, y_val, val_sample_weights)</code></li>
</ul>
<p>on which to evaluate
the loss and any model metrics at the end of each epoch.
The model will not be trained on this data.</p>
</li>
<li>
<p><strong>validation_steps</strong>: Only relevant if <code>validation_data</code>
is a generator. Total number of steps (batches of samples)
to yield from <code>validation_data</code> generator before stopping
at the end of every epoch. It should typically
be equal to the number of samples of your
validation dataset divided by the batch size.
Optional for <code>Sequence</code>: if unspecified, will use
the <code>len(validation_data)</code> as a number of steps.</p>
</li>
<li><strong>validation_freq</strong>: Only relevant if validation data is provided. Integer
or <code>collections.Container</code> instance (e.g. list, tuple, etc.). If an
integer, specifies how many training epochs to run before a new
validation run is performed, e.g. <code>validation_freq=2</code> runs
validation every 2 epochs. If a Container, specifies the epochs on
which to run validation, e.g. <code>validation_freq=[1, 2, 10]</code> runs
validation at the end of the 1st, 2nd, and 10th epochs.</li>
<li><strong>class_weight</strong>: Optional dictionary mapping class indices (integers)
to a weight (float) value, used for weighting the loss function
(during training only). This can be useful to tell the model to
"pay more attention" to samples
from an under-represented class.</li>
<li><strong>max_queue_size</strong>: Integer. Maximum size for the generator queue.
If unspecified, <code>max_queue_size</code> will default to 10.</li>
<li><strong>workers</strong>: Integer. Maximum number of processes to spin up
when using process-based threading.
If unspecified, <code>workers</code> will default to 1. If 0, will
execute the generator on the main thread.</li>
<li><strong>use_multiprocessing</strong>: Boolean.
If <code>True</code>, use process-based threading.
If unspecified, <code>use_multiprocessing</code> will default to <code>False</code>.
Note that because this implementation
relies on multiprocessing,
you should not pass non-picklable arguments to the generator
as they can't be passed easily to children processes.</li>
<li><strong>shuffle</strong>: Boolean. Whether to shuffle the order of the batches at
the beginning of each epoch. Only used with instances
of <code>Sequence</code> (<code>keras.utils.Sequence</code>).
Has no effect when <code>steps_per_epoch</code> is not <code>None</code>.</li>
<li><strong>initial_epoch</strong>: Integer.
Epoch at which to start training
(useful for resuming a previous training run).</li>
</ul>
<p><strong>Returns</strong></p>
<p>A <code>History</code> object. Its <code>History.history</code> attribute is
a record of training loss values and metrics values
at successive epochs, as well as validation loss values
and validation metrics values (if applicable).</p>
<p><strong>Raises</strong></p>
<ul>
<li><strong>ValueError</strong>: In case the generator yields data in an invalid format.</li>
</ul>
<p><strong>Example</strong></p>
<pre><code class="python">def generate_arrays_from_file(path):
while True:
with open(path) as f:
for line in f:
# create numpy arrays of input data
# and labels, from each line in the file
x1, x2, y = process_line(line)
yield ({'input_1': x1, 'input_2': x2}, {'output': y})
model.fit_generator(generate_arrays_from_file('/my_file.txt'),
steps_per_epoch=10000, epochs=10)
</code></pre>
<hr />
<h3 id="evaluate_generator">evaluate_generator</h3>
<pre><code class="python">evaluate_generator(generator, steps=None, callbacks=None, max_queue_size=10, workers=1, use_multiprocessing=False, verbose=0)
</code></pre>
<p>Evaluates the model on a data generator.</p>
<p>The generator should return the same kind of data
as accepted by <code>test_on_batch</code>.</p>
<p><strong>Arguments</strong></p>
<ul>
<li><strong>generator</strong>: Generator yielding tuples (inputs, targets)
or (inputs, targets, sample_weights)
or an instance of Sequence (keras.utils.Sequence)
object in order to avoid duplicate data
when using multiprocessing.</li>
<li><strong>steps</strong>: Total number of steps (batches of samples)
to yield from <code>generator</code> before stopping.
Optional for <code>Sequence</code>: if unspecified, will use
the <code>len(generator)</code> as a number of steps.</li>
<li><strong>callbacks</strong>: List of <code>keras.callbacks.Callback</code> instances.
List of callbacks to apply during training.
See <a href="/callbacks">callbacks</a>.</li>
<li><strong>max_queue_size</strong>: maximum size for the generator queue</li>
<li><strong>workers</strong>: Integer. Maximum number of processes to spin up
when using process based threading.
If unspecified, <code>workers</code> will default to 1. If 0, will
execute the generator on the main thread.</li>
<li><strong>use_multiprocessing</strong>: if True, use process based threading.
Note that because
this implementation relies on multiprocessing,
you should not pass
non picklable arguments to the generator
as they can't be passed
easily to children processes.</li>
<li><strong>verbose</strong>: verbosity mode, 0 or 1.</li>
</ul>
<p><strong>Returns</strong></p>
<p>Scalar test loss (if the model has a single output and no metrics)
or list of scalars (if the model has multiple outputs
and/or metrics). The attribute <code>model.metrics_names</code> will give you
the display labels for the scalar outputs.</p>
<p><strong>Raises</strong></p>
<ul>
<li><strong>ValueError</strong>: In case the generator yields
data in an invalid format.</li>
</ul>
<hr />
<h3 id="predict_generator">predict_generator</h3>
<pre><code class="python">predict_generator(generator, steps=None, callbacks=None, max_queue_size=10, workers=1, use_multiprocessing=False, verbose=0)
</code></pre>
<p>Generates predictions for the input samples from a data generator.</p>
<p>The generator should return the same kind of data as accepted by
<code>predict_on_batch</code>.</p>
<p><strong>Arguments</strong></p>
<ul>
<li><strong>generator</strong>: Generator yielding batches of input samples
or an instance of Sequence (keras.utils.Sequence)
object in order to avoid duplicate data
when using multiprocessing.</li>
<li><strong>steps</strong>: Total number of steps (batches of samples)
to yield from <code>generator</code> before stopping.
Optional for <code>Sequence</code>: if unspecified, will use
the <code>len(generator)</code> as a number of steps.</li>
<li><strong>callbacks</strong>: List of <code>keras.callbacks.Callback</code> instances.
List of callbacks to apply during training.
See <a href="/callbacks">callbacks</a>.</li>
<li><strong>max_queue_size</strong>: Maximum size for the generator queue.</li>
<li><strong>workers</strong>: Integer. Maximum number of processes to spin up
when using process based threading.
If unspecified, <code>workers</code> will default to 1. If 0, will
execute the generator on the main thread.</li>
<li><strong>use_multiprocessing</strong>: If <code>True</code>, use process based threading.
Note that because
this implementation relies on multiprocessing,
you should not pass
non picklable arguments to the generator
as they can't be passed
easily to children processes.</li>
<li><strong>verbose</strong>: verbosity mode, 0 or 1.</li>
</ul>
<p><strong>Returns</strong></p>
<p>Numpy array(s) of predictions.</p>
<p><strong>Raises</strong></p>
<ul>
<li><strong>ValueError</strong>: In case the generator yields
data in an invalid format.</li>
</ul>
<hr />
<h3 id="get_layer">get_layer</h3>
<pre><code class="python">get_layer(name=None, index=None)
</code></pre>
<p>Retrieves a layer based on either its name (unique) or index.</p>
<p>If <code>name</code> and <code>index</code> are both provided, <code>index</code> will take precedence.</p>
<p>Indices are based on order of horizontal graph traversal (bottom-up).</p>
<p><strong>Arguments</strong></p>
<ul>
<li><strong>name</strong>: String, name of layer.</li>
<li><strong>index</strong>: Integer, index of layer.</li>
</ul>
<p><strong>Returns</strong></p>
<p>A layer instance.</p>
<p><strong>Raises</strong></p>
<ul>
<li><strong>ValueError</strong>: In case of invalid layer name or index.</li>
</ul>
</div>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="../model/" class="btn btn-neutral float-right" title="Model (functional API)">Next <span class="icon icon-circle-arrow-right"></span></a>
<a href="../about-keras-models/" class="btn btn-neutral" title="About Keras models"><span class="icon icon-circle-arrow-left"></span> Previous</a>
</div>
<hr/>
<div role="contentinfo">
<!-- Copyright etc -->
</div>
Built with <a href="https://www.mkdocs.org/">MkDocs</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<div class="rst-versions" role="note" aria-label="versions">
<span class="rst-current-version" data-toggle="rst-current-version">
<a href="http://github.com/keras-team/keras/" class="fa fa-github" style="float: left; color: #fcfcfc"> GitHub</a>
<span><a href="../about-keras-models/" style="color: #fcfcfc;">« Previous</a></span>
<span style="margin-left: 15px"><a href="../model/" style="color: #fcfcfc">Next »</a></span>
</span>
</div>
<script>var base_url = '../..';</script>
<script src="../../js/theme.js" defer></script>
<script src="../../search/main.js" defer></script>
<script type="text/javascript" defer>
window.onload = function () {
SphinxRtdTheme.Navigation.enable(true);
};
</script>
</body>
</html>
|