File: index.html

package info (click to toggle)
keras 2.3.1%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 9,288 kB
  • sloc: python: 48,266; javascript: 1,794; xml: 297; makefile: 36; sh: 30
file content (509 lines) | stat: -rw-r--r-- 23,795 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  <meta http-equiv="X-UA-Compatible" content="IE=edge">
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  
  <link rel="canonical" href="http://keras.io/optimizers/">
  <link rel="shortcut icon" href="../img/favicon.ico">
  <title>Optimizers - Keras Documentation</title>
  <link href='https://fonts.googleapis.com/css?family=Lato:400,700|Source+Sans+Pro:400,700|Inconsolata:400,700' rel='stylesheet' type='text/css'>

  <link rel="stylesheet" href="../css/theme.css" type="text/css" />
  <link rel="stylesheet" href="../css/theme_extra.css" type="text/css" />
  <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/styles/github.min.css">
  
  <script>
    // Current page data
    var mkdocs_page_name = "Optimizers";
    var mkdocs_page_input_path = "optimizers.md";
    var mkdocs_page_url = "/optimizers/";
  </script>
  
  <script src="../js/jquery-2.1.1.min.js" defer></script>
  <script src="../js/modernizr-2.8.3.min.js" defer></script>
  <script src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/highlight.min.js"></script>
  <script>hljs.initHighlightingOnLoad();</script> 
  
  <script>
      (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
      (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
      m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
      })(window,document,'script','https://www.google-analytics.com/analytics.js','ga');

      ga('create', 'UA-61785484-1', 'keras.io');
      ga('send', 'pageview');
  </script>
  
</head>

<body class="wy-body-for-nav" role="document">

  <div class="wy-grid-for-nav">

    
    <nav data-toggle="wy-nav-shift" class="wy-nav-side stickynav">
    <div class="wy-side-scroll">
      <a href="">
        <div class="keras-logo">
          <img src="/img/keras-logo-small.jpg" class="keras-logo-img">
          Keras Documentation
        </div>
      </a>

      <div class="wy-side-nav-search">
        <div role="search">
  <form id ="rtd-search-form" class="wy-form" action="../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" title="Type search term here" />
  </form>
</div>
      </div>

      <div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="..">Home</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../why-use-keras/">Why use Keras</a>
                    </li>
                </ul>
                <p class="caption"><span class="caption-text">Getting started</span></p>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../getting-started/sequential-model-guide/">Guide to the Sequential model</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../getting-started/functional-api-guide/">Guide to the Functional API</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../getting-started/faq/">FAQ</a>
                    </li>
                </ul>
                <p class="caption"><span class="caption-text">Models</span></p>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../models/about-keras-models/">About Keras models</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../models/sequential/">Sequential</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../models/model/">Model (functional API)</a>
                    </li>
                </ul>
                <p class="caption"><span class="caption-text">Layers</span></p>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../layers/about-keras-layers/">About Keras layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../layers/core/">Core Layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../layers/convolutional/">Convolutional Layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../layers/pooling/">Pooling Layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../layers/local/">Locally-connected Layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../layers/recurrent/">Recurrent Layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../layers/embeddings/">Embedding Layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../layers/merge/">Merge Layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../layers/advanced-activations/">Advanced Activations Layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../layers/normalization/">Normalization Layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../layers/noise/">Noise layers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../layers/wrappers/">Layer wrappers</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../layers/writing-your-own-keras-layers/">Writing your own Keras layers</a>
                    </li>
                </ul>
                <p class="caption"><span class="caption-text">Preprocessing</span></p>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../preprocessing/sequence/">Sequence Preprocessing</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../preprocessing/text/">Text Preprocessing</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../preprocessing/image/">Image Preprocessing</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../losses/">Losses</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../metrics/">Metrics</a>
                    </li>
                </ul>
                <ul class="current">
                    <li class="toctree-l1 current"><a class="reference internal current" href="./">Optimizers</a>
    <ul class="current">
    </ul>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../activations/">Activations</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../callbacks/">Callbacks</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../datasets/">Datasets</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../applications/">Applications</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../backend/">Backend</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../initializers/">Initializers</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../regularizers/">Regularizers</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../constraints/">Constraints</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../visualization/">Visualization</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../scikit-learn-api/">Scikit-learn API</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../utils/">Utils</a>
                    </li>
                </ul>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../contributing/">Contributing</a>
                    </li>
                </ul>
                <p class="caption"><span class="caption-text">Examples</span></p>
                <ul>
                    <li class="toctree-l1"><a class="reference internal" href="../examples/addition_rnn/">Addition RNN</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../examples/antirectifier/">Custom layer - antirectifier</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../examples/babi_rnn/">Baby RNN</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../examples/babi_memnn/">Baby MemNN</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../examples/cifar10_cnn/">CIFAR-10 CNN</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../examples/cifar10_resnet/">CIFAR-10 ResNet</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../examples/conv_filter_visualization/">Convolution filter visualization</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../examples/conv_lstm/">Convolutional LSTM</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../examples/deep_dream/">Deep Dream</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../examples/image_ocr/">Image OCR</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../examples/imdb_bidirectional_lstm/">Bidirectional LSTM</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../examples/imdb_cnn/">1D CNN for text classification</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../examples/imdb_cnn_lstm/">Sentiment classification CNN-LSTM</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../examples/imdb_fasttext/">Fasttext for text classification</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../examples/imdb_lstm/">Sentiment classification LSTM</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../examples/lstm_seq2seq/">Sequence to sequence - training</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../examples/lstm_seq2seq_restore/">Sequence to sequence - prediction</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../examples/lstm_stateful/">Stateful LSTM</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../examples/lstm_text_generation/">LSTM for text generation</a>
                    </li>
                    <li class="toctree-l1"><a class="reference internal" href="../examples/mnist_acgan/">Auxiliary Classifier GAN</a>
                    </li>
                </ul>
      </div>
    </div>
    </nav>

    <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">

      
      <nav class="wy-nav-top" role="navigation" aria-label="top navigation">
        <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
        <a href="..">Keras Documentation</a>
      </nav>

      
      <div class="wy-nav-content">
        <div class="rst-content">
          <div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
    <li><a href="..">Docs</a> &raquo;</li>
    
      
    
    <li>Optimizers</li>
    <li class="wy-breadcrumbs-aside">
      
        <a href="https://github.com/keras-team/keras/tree/master/docs"
          class="icon icon-github"> Edit on GitHub</a>
      
    </li>
  </ul>
  
  <hr/>
</div>
          <div role="main">
            <div class="section">
              
                <h2 id="usage-of-optimizers">Usage of optimizers</h2>
<p>An optimizer is one of the two arguments required for compiling a Keras model:</p>
<pre><code class="python">from keras import optimizers

model = Sequential()
model.add(Dense(64, kernel_initializer='uniform', input_shape=(10,)))
model.add(Activation('softmax'))

sgd = optimizers.SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='mean_squared_error', optimizer=sgd)
</code></pre>

<p>You can either instantiate an optimizer before passing it to <code>model.compile()</code> , as in the above example, or you can call it by its name. In the latter case, the default parameters for the optimizer will be used.</p>
<pre><code class="python"># pass optimizer by name: default parameters will be used
model.compile(loss='mean_squared_error', optimizer='sgd')
</code></pre>

<hr />
<h2 id="parameters-common-to-all-keras-optimizers">Parameters common to all Keras optimizers</h2>
<p>The parameters <code>clipnorm</code> and <code>clipvalue</code> can be used with all optimizers to control gradient clipping:</p>
<pre><code class="python">from keras import optimizers

# All parameter gradients will be clipped to
# a maximum norm of 1.
sgd = optimizers.SGD(lr=0.01, clipnorm=1.)
</code></pre>

<pre><code class="python">from keras import optimizers

# All parameter gradients will be clipped to
# a maximum value of 0.5 and
# a minimum value of -0.5.
sgd = optimizers.SGD(lr=0.01, clipvalue=0.5)
</code></pre>

<hr />
<p><span style="float:right;"><a href="https://github.com/keras-team/keras/blob/master/keras/optimizers.py#L164">[source]</a></span></p>
<h3 id="sgd">SGD</h3>
<pre><code class="python">keras.optimizers.SGD(learning_rate=0.01, momentum=0.0, nesterov=False)
</code></pre>

<p>Stochastic gradient descent optimizer.</p>
<p>Includes support for momentum,
learning rate decay, and Nesterov momentum.</p>
<p><strong>Arguments</strong></p>
<ul>
<li><strong>learning_rate</strong>: float &gt;= 0. Learning rate.</li>
<li><strong>momentum</strong>: float &gt;= 0. Parameter that accelerates SGD
    in the relevant direction and dampens oscillations.</li>
<li><strong>nesterov</strong>: boolean. Whether to apply Nesterov momentum.</li>
</ul>
<hr />
<p><span style="float:right;"><a href="https://github.com/keras-team/keras/blob/master/keras/optimizers.py#L229">[source]</a></span></p>
<h3 id="rmsprop">RMSprop</h3>
<pre><code class="python">keras.optimizers.RMSprop(learning_rate=0.001, rho=0.9)
</code></pre>

<p>RMSProp optimizer.</p>
<p>It is recommended to leave the parameters of this optimizer
at their default values
(except the learning rate, which can be freely tuned).</p>
<p><strong>Arguments</strong></p>
<ul>
<li><strong>learning_rate</strong>: float &gt;= 0. Learning rate.</li>
<li><strong>rho</strong>: float &gt;= 0.</li>
</ul>
<p><strong>References</strong></p>
<ul>
<li><a href="http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf">rmsprop: Divide the gradient by a running average of its recent magnitude
   </a></li>
</ul>
<hr />
<p><span style="float:right;"><a href="https://github.com/keras-team/keras/blob/master/keras/optimizers.py#L303">[source]</a></span></p>
<h3 id="adagrad">Adagrad</h3>
<pre><code class="python">keras.optimizers.Adagrad(learning_rate=0.01)
</code></pre>

<p>Adagrad optimizer.</p>
<p>Adagrad is an optimizer with parameter-specific learning rates,
which are adapted relative to how frequently a parameter gets
updated during training. The more updates a parameter receives,
the smaller the learning rate.</p>
<p>It is recommended to leave the parameters of this optimizer
at their default values.</p>
<p><strong>Arguments</strong></p>
<ul>
<li><strong>learning_rate</strong>: float &gt;= 0. Initial learning rate.</li>
</ul>
<p><strong>References</strong></p>
<ul>
<li><a href="http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf">Adaptive Subgradient Methods for Online Learning and Stochastic
   Optimization</a></li>
</ul>
<hr />
<p><span style="float:right;"><a href="https://github.com/keras-team/keras/blob/master/keras/optimizers.py#L376">[source]</a></span></p>
<h3 id="adadelta">Adadelta</h3>
<pre><code class="python">keras.optimizers.Adadelta(learning_rate=1.0, rho=0.95)
</code></pre>

<p>Adadelta optimizer.</p>
<p>Adadelta is a more robust extension of Adagrad
that adapts learning rates based on a moving window of gradient updates,
instead of accumulating all past gradients. This way, Adadelta continues
learning even when many updates have been done. Compared to Adagrad, in the
original version of Adadelta you don't have to set an initial learning
rate. In this version, initial learning rate and decay factor can
be set, as in most other Keras optimizers.</p>
<p>It is recommended to leave the parameters of this optimizer
at their default values.</p>
<p><strong>Arguments</strong></p>
<ul>
<li><strong>learning_rate</strong>: float &gt;= 0. Initial learning rate, defaults to 1.
    It is recommended to leave it at the default value.</li>
<li><strong>rho</strong>: float &gt;= 0. Adadelta decay factor, corresponding to fraction of
    gradient to keep at each time step.</li>
</ul>
<p><strong>References</strong></p>
<ul>
<li><a href="https://arxiv.org/abs/1212.5701">Adadelta - an adaptive learning rate method</a></li>
</ul>
<hr />
<p><span style="float:right;"><a href="https://github.com/keras-team/keras/blob/master/keras/optimizers.py#L467">[source]</a></span></p>
<h3 id="adam">Adam</h3>
<pre><code class="python">keras.optimizers.Adam(learning_rate=0.001, beta_1=0.9, beta_2=0.999, amsgrad=False)
</code></pre>

<p>Adam optimizer.</p>
<p>Default parameters follow those provided in the original paper.</p>
<p><strong>Arguments</strong></p>
<ul>
<li><strong>learning_rate</strong>: float &gt;= 0. Learning rate.</li>
<li><strong>beta_1</strong>: float, 0 &lt; beta &lt; 1. Generally close to 1.</li>
<li><strong>beta_2</strong>: float, 0 &lt; beta &lt; 1. Generally close to 1.</li>
<li><strong>amsgrad</strong>: boolean. Whether to apply the AMSGrad variant of this
    algorithm from the paper "On the Convergence of Adam and
    Beyond".</li>
</ul>
<p><strong>References</strong></p>
<ul>
<li><a href="https://arxiv.org/abs/1412.6980v8">Adam - A Method for Stochastic Optimization</a></li>
<li><a href="https://openreview.net/forum?id=ryQu7f-RZ">On the Convergence of Adam and Beyond</a></li>
</ul>
<hr />
<p><span style="float:right;"><a href="https://github.com/keras-team/keras/blob/master/keras/optimizers.py#L567">[source]</a></span></p>
<h3 id="adamax">Adamax</h3>
<pre><code class="python">keras.optimizers.Adamax(learning_rate=0.002, beta_1=0.9, beta_2=0.999)
</code></pre>

<p>Adamax optimizer from Adam paper's Section 7.</p>
<p>It is a variant of Adam based on the infinity norm.
Default parameters follow those provided in the paper.</p>
<p><strong>Arguments</strong></p>
<ul>
<li><strong>learning_rate</strong>: float &gt;= 0. Learning rate.</li>
<li><strong>beta_1</strong>: float, 0 &lt; beta &lt; 1. Generally close to 1.</li>
<li><strong>beta_2</strong>: float, 0 &lt; beta &lt; 1. Generally close to 1.</li>
</ul>
<p><strong>References</strong></p>
<ul>
<li><a href="https://arxiv.org/abs/1412.6980v8">Adam - A Method for Stochastic Optimization</a></li>
</ul>
<hr />
<p><span style="float:right;"><a href="https://github.com/keras-team/keras/blob/master/keras/optimizers.py#L645">[source]</a></span></p>
<h3 id="nadam">Nadam</h3>
<pre><code class="python">keras.optimizers.Nadam(learning_rate=0.002, beta_1=0.9, beta_2=0.999)
</code></pre>

<p>Nesterov Adam optimizer.</p>
<p>Much like Adam is essentially RMSprop with momentum,
Nadam is RMSprop with Nesterov momentum.</p>
<p>Default parameters follow those provided in the paper.
It is recommended to leave the parameters of this optimizer
at their default values.</p>
<p><strong>Arguments</strong></p>
<ul>
<li><strong>learning_rate</strong>: float &gt;= 0. Learning rate.</li>
<li><strong>beta_1</strong>: float, 0 &lt; beta &lt; 1. Generally close to 1.</li>
<li><strong>beta_2</strong>: float, 0 &lt; beta &lt; 1. Generally close to 1.</li>
</ul>
<p><strong>References</strong></p>
<ul>
<li><a href="http://cs229.stanford.edu/proj2015/054_report.pdf">Nadam report</a></li>
<li><a href="http://www.cs.toronto.edu/~fritz/absps/momentum.pdf">On the importance of initialization and momentum in deep learning</a></li>
</ul>
              
            </div>
          </div>
          <footer>
  
    <div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
      
        <a href="../activations/" class="btn btn-neutral float-right" title="Activations">Next <span class="icon icon-circle-arrow-right"></span></a>
      
      
        <a href="../metrics/" class="btn btn-neutral" title="Metrics"><span class="icon icon-circle-arrow-left"></span> Previous</a>
      
    </div>
  

  <hr/>

  <div role="contentinfo">
    <!-- Copyright etc -->
    
  </div>

  Built with <a href="https://www.mkdocs.org/">MkDocs</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
      
        </div>
      </div>

    </section>

  </div>

  <div class="rst-versions" role="note" aria-label="versions">
    <span class="rst-current-version" data-toggle="rst-current-version">
      
          <a href="http://github.com/keras-team/keras/" class="fa fa-github" style="float: left; color: #fcfcfc"> GitHub</a>
      
      
        <span><a href="../metrics/" style="color: #fcfcfc;">&laquo; Previous</a></span>
      
      
        <span style="margin-left: 15px"><a href="../activations/" style="color: #fcfcfc">Next &raquo;</a></span>
      
    </span>
</div>
    <script>var base_url = '..';</script>
    <script src="../js/theme.js" defer></script>
      <script src="../search/main.js" defer></script>
    <script type="text/javascript" defer>
        window.onload = function () {
            SphinxRtdTheme.Navigation.enable(true);
        };
    </script>

</body>
</html>