1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
|
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<link rel="canonical" href="http://keras.io/why-use-keras/">
<link rel="shortcut icon" href="../img/favicon.ico">
<title>Why use Keras - Keras Documentation</title>
<link href='https://fonts.googleapis.com/css?family=Lato:400,700|Source+Sans+Pro:400,700|Inconsolata:400,700' rel='stylesheet' type='text/css'>
<link rel="stylesheet" href="../css/theme.css" type="text/css" />
<link rel="stylesheet" href="../css/theme_extra.css" type="text/css" />
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/styles/github.min.css">
<script>
// Current page data
var mkdocs_page_name = "Why use Keras";
var mkdocs_page_input_path = "why-use-keras.md";
var mkdocs_page_url = "/why-use-keras/";
</script>
<script src="../js/jquery-2.1.1.min.js" defer></script>
<script src="../js/modernizr-2.8.3.min.js" defer></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/highlight.min.js"></script>
<script>hljs.initHighlightingOnLoad();</script>
<script>
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
})(window,document,'script','https://www.google-analytics.com/analytics.js','ga');
ga('create', 'UA-61785484-1', 'keras.io');
ga('send', 'pageview');
</script>
</head>
<body class="wy-body-for-nav" role="document">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side stickynav">
<div class="wy-side-scroll">
<a href="">
<div class="keras-logo">
<img src="/img/keras-logo-small.jpg" class="keras-logo-img">
Keras Documentation
</div>
</a>
<div class="wy-side-nav-search">
<div role="search">
<form id ="rtd-search-form" class="wy-form" action="../search.html" method="get">
<input type="text" name="q" placeholder="Search docs" title="Type search term here" />
</form>
</div>
</div>
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<ul>
<li class="toctree-l1"><a class="reference internal" href="..">Home</a>
</li>
</ul>
<ul class="current">
<li class="toctree-l1 current"><a class="reference internal current" href="./">Why use Keras</a>
<ul class="current">
<li class="toctree-l2"><a class="reference internal" href="#keras-prioritizes-developer-experience">Keras prioritizes developer experience</a>
</li>
<li class="toctree-l2"><a class="reference internal" href="#keras-has-broad-adoption-in-the-industry-and-the-research-community">Keras has broad adoption in the industry and the research community</a>
</li>
<li class="toctree-l2"><a class="reference internal" href="#keras-makes-it-easy-to-turn-models-into-products">Keras makes it easy to turn models into products</a>
</li>
<li class="toctree-l2"><a class="reference internal" href="#keras-supports-multiple-backend-engines-and-does-not-lock-you-into-one-ecosystem">Keras supports multiple backend engines and does not lock you into one ecosystem</a>
</li>
<li class="toctree-l2"><a class="reference internal" href="#keras-has-strong-multi-gpu-support-and-distributed-training-support">Keras has strong multi-GPU support and distributed training support</a>
</li>
<li class="toctree-l2"><a class="reference internal" href="#keras-development-is-backed-by-key-companies-in-the-deep-learning-ecosystem">Keras development is backed by key companies in the deep learning ecosystem</a>
</li>
</ul>
</li>
</ul>
<p class="caption"><span class="caption-text">Getting started</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../getting-started/sequential-model-guide/">Guide to the Sequential model</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../getting-started/functional-api-guide/">Guide to the Functional API</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../getting-started/faq/">FAQ</a>
</li>
</ul>
<p class="caption"><span class="caption-text">Models</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../models/about-keras-models/">About Keras models</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../models/sequential/">Sequential</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../models/model/">Model (functional API)</a>
</li>
</ul>
<p class="caption"><span class="caption-text">Layers</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../layers/about-keras-layers/">About Keras layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../layers/core/">Core Layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../layers/convolutional/">Convolutional Layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../layers/pooling/">Pooling Layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../layers/local/">Locally-connected Layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../layers/recurrent/">Recurrent Layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../layers/embeddings/">Embedding Layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../layers/merge/">Merge Layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../layers/advanced-activations/">Advanced Activations Layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../layers/normalization/">Normalization Layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../layers/noise/">Noise layers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../layers/wrappers/">Layer wrappers</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../layers/writing-your-own-keras-layers/">Writing your own Keras layers</a>
</li>
</ul>
<p class="caption"><span class="caption-text">Preprocessing</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../preprocessing/sequence/">Sequence Preprocessing</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../preprocessing/text/">Text Preprocessing</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../preprocessing/image/">Image Preprocessing</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../losses/">Losses</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../metrics/">Metrics</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../optimizers/">Optimizers</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../activations/">Activations</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../callbacks/">Callbacks</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../datasets/">Datasets</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../applications/">Applications</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../backend/">Backend</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../initializers/">Initializers</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../regularizers/">Regularizers</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../constraints/">Constraints</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../visualization/">Visualization</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../scikit-learn-api/">Scikit-learn API</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../utils/">Utils</a>
</li>
</ul>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../contributing/">Contributing</a>
</li>
</ul>
<p class="caption"><span class="caption-text">Examples</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../examples/addition_rnn/">Addition RNN</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../examples/antirectifier/">Custom layer - antirectifier</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../examples/babi_rnn/">Baby RNN</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../examples/babi_memnn/">Baby MemNN</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../examples/cifar10_cnn/">CIFAR-10 CNN</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../examples/cifar10_resnet/">CIFAR-10 ResNet</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../examples/conv_filter_visualization/">Convolution filter visualization</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../examples/conv_lstm/">Convolutional LSTM</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../examples/deep_dream/">Deep Dream</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../examples/image_ocr/">Image OCR</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../examples/imdb_bidirectional_lstm/">Bidirectional LSTM</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../examples/imdb_cnn/">1D CNN for text classification</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../examples/imdb_cnn_lstm/">Sentiment classification CNN-LSTM</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../examples/imdb_fasttext/">Fasttext for text classification</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../examples/imdb_lstm/">Sentiment classification LSTM</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../examples/lstm_seq2seq/">Sequence to sequence - training</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../examples/lstm_seq2seq_restore/">Sequence to sequence - prediction</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../examples/lstm_stateful/">Stateful LSTM</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../examples/lstm_text_generation/">LSTM for text generation</a>
</li>
<li class="toctree-l1"><a class="reference internal" href="../examples/mnist_acgan/">Auxiliary Classifier GAN</a>
</li>
</ul>
</div>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
<nav class="wy-nav-top" role="navigation" aria-label="top navigation">
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="..">Keras Documentation</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="..">Docs</a> »</li>
<li>Why use Keras</li>
<li class="wy-breadcrumbs-aside">
<a href="https://github.com/keras-team/keras/tree/master/docs"
class="icon icon-github"> Edit on GitHub</a>
</li>
</ul>
<hr/>
</div>
<div role="main">
<div class="section">
<h1 id="why-use-keras">Why use Keras?</h1>
<p>There are countless deep learning frameworks available today. Why use Keras rather than any other? Here are some of the areas in which Keras compares favorably to existing alternatives.</p>
<hr />
<h2 id="keras-prioritizes-developer-experience">Keras prioritizes developer experience</h2>
<ul>
<li>Keras is an API designed for human beings, not machines. <a href="https://blog.keras.io/user-experience-design-for-apis.html">Keras follows best practices for reducing cognitive load</a>: it offers consistent & simple APIs, it minimizes the number of user actions required for common use cases, and it provides clear and actionable feedback upon user error.</li>
<li>This makes Keras easy to learn and easy to use. As a Keras user, you are more productive, allowing you to try more ideas than your competition, faster -- which in turn <a href="https://www.quora.com/Why-has-Keras-been-so-successful-lately-at-Kaggle-competitions">helps you win machine learning competitions</a>.</li>
<li>This ease of use does not come at the cost of reduced flexibility: because Keras integrates with lower-level deep learning languages (in particular TensorFlow), it enables you to implement anything you could have built in the base language. In particular, as <code>tf.keras</code>, the Keras API integrates seamlessly with your TensorFlow workflows.</li>
</ul>
<hr />
<h2 id="keras-has-broad-adoption-in-the-industry-and-the-research-community">Keras has broad adoption in the industry and the research community</h2>
<p><a href='https://towardsdatascience.com/deep-learning-framework-power-scores-2018-23607ddf297a'>
<img style='width: 80%; margin-left: 10%;' src='https://s3.amazonaws.com/keras.io/img/dl_frameworks_power_scores.png'/>
</a>
<p style='font-style: italic; font-size: 10pt; text-align: center;'>
Deep learning frameworks ranking computed by Jeff Hale, based on 11 data sources across 7 categories
</i></p>
<p>With over 250,000 individual users as of mid-2018, Keras has stronger adoption in both the industry and the research community than any other deep learning framework except TensorFlow itself (and the Keras API is the official frontend of TensorFlow, via the <code>tf.keras</code> module).</p>
<p>You are already constantly interacting with features built with Keras -- it is in use at Netflix, Uber, Yelp, Instacart, Zocdoc, Square, and many others. It is especially popular among startups that place deep learning at the core of their products.</p>
<p>Keras is also a favorite among deep learning researchers, coming in #2 in terms of mentions in scientific papers uploaded to the preprint server <a href="https://arxiv.org/archive/cs">arXiv.org</a>. Keras has also been adopted by researchers at large scientific organizations, in particular CERN and NASA.</p>
<hr />
<h2 id="keras-makes-it-easy-to-turn-models-into-products">Keras makes it easy to turn models into products</h2>
<p>Your Keras models can be easily deployed across a greater range of platforms than any other deep learning framework:</p>
<ul>
<li>On iOS, via <a href="https://developer.apple.com/documentation/coreml">Appleās CoreML</a> (Keras support officially provided by Apple). Here's <a href="https://www.pyimagesearch.com/2018/04/23/running-keras-models-on-ios-with-coreml/">a tutorial</a>.</li>
<li>On Android, via the TensorFlow Android runtime. Example: <a href="https://medium.com/@timanglade/how-hbos-silicon-valley-built-not-hotdog-with-mobile-tensorflow-keras-react-native-ef03260747f3">Not Hotdog app</a>.</li>
<li>In the browser, via GPU-accelerated JavaScript runtimes such as <a href="https://transcranial.github.io/keras-js/#/">Keras.js</a> and <a href="https://mil-tokyo.github.io/webdnn/">WebDNN</a>.</li>
<li>On Google Cloud, via <a href="https://www.tensorflow.org/serving/">TensorFlow-Serving</a>.</li>
<li><a href="https://blog.keras.io/building-a-simple-keras-deep-learning-rest-api.html">In a Python webapp backend (such as a Flask app)</a>.</li>
<li>On the JVM, via <a href="https://deeplearning4j.org/model-import-keras">DL4J model import provided by SkyMind</a>.</li>
<li>On Raspberry Pi.</li>
</ul>
<hr />
<h2 id="keras-supports-multiple-backend-engines-and-does-not-lock-you-into-one-ecosystem">Keras supports multiple backend engines and does not lock you into one ecosystem</h2>
<p>Your Keras models can be developed with a range of different <a href="https://keras.io/backend/">deep learning backends</a>. Importantly, any Keras model that only leverages built-in layers will be portable across all these backends: you can train a model with one backend, and load it with another (e.g. for deployment). Available backends include:</p>
<ul>
<li>The TensorFlow backend (from Google)</li>
<li>The CNTK backend (from Microsoft)</li>
<li>The Theano backend</li>
</ul>
<p>Amazon also has <a href="https://github.com/awslabs/keras-apache-mxnet">a fork of Keras which uses MXNet as backend</a>.</p>
<p>As such, your Keras model can be trained on a number of different hardware platforms beyond CPUs:</p>
<ul>
<li><a href="https://developer.nvidia.com/deep-learning">NVIDIA GPUs</a></li>
<li><a href="https://cloud.google.com/tpu/">Google TPUs</a>, via the TensorFlow backend and Google Cloud</li>
<li>OpenCL-enabled GPUs, such as those from AMD, via <a href="https://github.com/plaidml/plaidml">the PlaidML Keras backend</a></li>
</ul>
<hr />
<h2 id="keras-has-strong-multi-gpu-support-and-distributed-training-support">Keras has strong multi-GPU support and distributed training support</h2>
<ul>
<li>Keras has <a href="/utils/#multi_gpu_model">built-in support for multi-GPU data parallelism</a></li>
<li><a href="https://github.com/uber/horovod">Horovod</a>, from Uber, has first-class support for Keras models</li>
<li>Keras models <a href="https://www.tensorflow.org/versions/master/api_docs/python/tf/keras/estimator/model_to_estimator">can be turned into TensorFlow Estimators</a> and trained on <a href="https://cloud.google.com/solutions/running-distributed-tensorflow-on-compute-engine">clusters of GPUs on Google Cloud</a></li>
<li>Keras can be run on Spark via <a href="https://github.com/cerndb/dist-keras">Dist-Keras</a> (from CERN) and <a href="https://github.com/maxpumperla/elephas">Elephas</a></li>
</ul>
<hr />
<h2 id="keras-development-is-backed-by-key-companies-in-the-deep-learning-ecosystem">Keras development is backed by key companies in the deep learning ecosystem</h2>
<p>Keras development is backed primarily by Google, and the Keras API comes packaged in TensorFlow as <code>tf.keras</code>. Additionally, Microsoft maintains the CNTK Keras backend. Amazon AWS is maintaining the Keras fork with MXNet support. Other contributing companies include NVIDIA, Uber, and Apple (with CoreML).</p>
<p><img src='/img/google-logo.png' style='width:200px; margin-right:15px;'/>
<img src='/img/microsoft-logo.png' style='width:200px; margin-right:15px;'/>
<img src='/img/nvidia-logo.png' style='width:200px; margin-right:15px;'/>
<img src='/img/aws-logo.png' style='width:110px; margin-right:15px;'/></p>
</div>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="../getting-started/sequential-model-guide/" class="btn btn-neutral float-right" title="Guide to the Sequential model">Next <span class="icon icon-circle-arrow-right"></span></a>
<a href=".." class="btn btn-neutral" title="Home"><span class="icon icon-circle-arrow-left"></span> Previous</a>
</div>
<hr/>
<div role="contentinfo">
<!-- Copyright etc -->
</div>
Built with <a href="https://www.mkdocs.org/">MkDocs</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<div class="rst-versions" role="note" aria-label="versions">
<span class="rst-current-version" data-toggle="rst-current-version">
<a href="http://github.com/keras-team/keras/" class="fa fa-github" style="float: left; color: #fcfcfc"> GitHub</a>
<span><a href=".." style="color: #fcfcfc;">« Previous</a></span>
<span style="margin-left: 15px"><a href="../getting-started/sequential-model-guide/" style="color: #fcfcfc">Next »</a></span>
</span>
</div>
<script>var base_url = '..';</script>
<script src="../js/theme.js" defer></script>
<script src="../search/main.js" defer></script>
<script type="text/javascript" defer>
window.onload = function () {
SphinxRtdTheme.Navigation.enable(true);
};
</script>
</body>
</html>
|