1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
|
## Usage of activations
Activations can either be used through an `Activation` layer, or through the `activation` argument supported by all forward layers:
```python
from keras.layers import Activation, Dense
model.add(Dense(64))
model.add(Activation('tanh'))
```
This is equivalent to:
```python
model.add(Dense(64, activation='tanh'))
```
You can also pass an element-wise TensorFlow/Theano/CNTK function as an activation:
```python
from keras import backend as K
model.add(Dense(64, activation=K.tanh))
```
## Available activations
### elu
```python
keras.activations.elu(x, alpha=1.0)
```
Exponential linear unit.
__Arguments__
- __x__: Input tensor.
- __alpha__: A scalar, slope of negative section.
__Returns__
The exponential linear activation: `x` if `x > 0` and
`alpha * (exp(x)-1)` if `x < 0`.
__References__
- [Fast and Accurate Deep Network Learning by Exponential
Linear Units (ELUs)](https://arxiv.org/abs/1511.07289)
----
### softmax
```python
keras.activations.softmax(x, axis=-1)
```
Softmax activation function.
__Arguments__
- __x__: Input tensor.
- __axis__: Integer, axis along which the softmax normalization is applied.
__Returns__
Tensor, output of softmax transformation.
__Raises__
- __ValueError__: In case `dim(x) == 1`.
----
### selu
```python
keras.activations.selu(x)
```
Scaled Exponential Linear Unit (SELU).
SELU is equal to: `scale * elu(x, alpha)`, where alpha and scale
are predefined constants. The values of `alpha` and `scale` are
chosen so that the mean and variance of the inputs are preserved
between two consecutive layers as long as the weights are initialized
correctly (see `lecun_normal` initialization) and the number of inputs
is "large enough" (see references for more information).
__Arguments__
- __x__: A tensor or variable to compute the activation function for.
__Returns__
The scaled exponential unit activation: `scale * elu(x, alpha)`.
__Note__
- To be used together with the initialization "lecun_normal".
- To be used together with the dropout variant "AlphaDropout".
__References__
- [Self-Normalizing Neural Networks](https://arxiv.org/abs/1706.02515)
----
### softplus
```python
keras.activations.softplus(x)
```
Softplus activation function.
__Arguments__
- __x__: Input tensor.
__Returns__
The softplus activation: `log(exp(x) + 1)`.
----
### softsign
```python
keras.activations.softsign(x)
```
Softsign activation function.
__Arguments__
- __x__: Input tensor.
__Returns__
The softsign activation: `x / (abs(x) + 1)`.
----
### relu
```python
keras.activations.relu(x, alpha=0.0, max_value=None, threshold=0.0)
```
Rectified Linear Unit.
With default values, it returns element-wise `max(x, 0)`.
Otherwise, it follows:
`f(x) = max_value` for `x >= max_value`,
`f(x) = x` for `threshold <= x < max_value`,
`f(x) = alpha * (x - threshold)` otherwise.
__Arguments__
- __x__: Input tensor.
- __alpha__: float. Slope of the negative part. Defaults to zero.
- __max_value__: float. Saturation threshold.
- __threshold__: float. Threshold value for thresholded activation.
__Returns__
A tensor.
----
### tanh
```python
keras.activations.tanh(x)
```
Hyperbolic tangent activation function.
__Arguments__
- __x__: Input tensor.
__Returns__
The hyperbolic activation:
`tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))`
----
### sigmoid
```python
keras.activations.sigmoid(x)
```
Sigmoid activation function.
__Arguments__
- __x__: Input tensor.
__Returns__
The sigmoid activation: `1 / (1 + exp(-x))`.
----
### hard_sigmoid
```python
keras.activations.hard_sigmoid(x)
```
Hard sigmoid activation function.
Faster to compute than sigmoid activation.
__Arguments__
- __x__: Input tensor.
__Returns__
Hard sigmoid activation:
- `0` if `x < -2.5`
- `1` if `x > 2.5`
- `0.2 * x + 0.5` if `-2.5 <= x <= 2.5`.
----
### exponential
```python
keras.activations.exponential(x)
```
Exponential (base e) activation function.
__Arguments__
- __x__: Input tensor.
__Returns__
Exponential activation: `exp(x)`.
----
### linear
```python
keras.activations.linear(x)
```
Linear (i.e. identity) activation function.
__Arguments__
- __x__: Input tensor.
__Returns__
Input tensor, unchanged.
## On "Advanced Activations"
Activations that are more complex than a simple TensorFlow/Theano/CNTK function (eg. learnable activations, which maintain a state) are available as [Advanced Activation layers](layers/advanced-activations.md), and can be found in the module `keras.layers.advanced_activations`. These include `PReLU` and `LeakyReLU`.
|