File: class_activation_maps.md

package info (click to toggle)
keras 2.3.1%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 9,288 kB
  • sloc: python: 48,266; javascript: 1,794; xml: 297; makefile: 36; sh: 30
file content (94 lines) | stat: -rw-r--r-- 3,017 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94


```python
import argparse
import cv2
import matplotlib.pyplot as plt

from keras.models import Model

import keras.applications.resnet50 as resnet
from keras.layers import UpSampling2D, Conv2D

# Set an appropriate image file
parser = argparse.ArgumentParser(description='Class activation maps with Keras.')
parser.add_argument('input_image', metavar='base', type=str,
                    help='Path to the image to use.')
args = parser.parse_args()
input_image = args.input_image


################################################################
# The following parameters can be changed to other models
# that use global average pooling.
# e.g.) InceptionResnetV2 / NASNetLarge
NETWORK_INPUT_SIZE = 224
MODEL_CLASS = resnet.ResNet50
PREPROCESS_FN = resnet.preprocess_input
LAST_CONV_LAYER = 'activation_49'
PRED_LAYER = 'fc1000'
################################################################

# number of imagenet classes
N_CLASSES = 1000


def load_img(fname, input_size, preprocess_fn):
    original_img = cv2.imread(fname)[:, :, ::-1]
    original_size = (original_img.shape[1], original_img.shape[0])
    img = cv2.resize(original_img, (input_size, input_size))
    imgs = np.expand_dims(preprocess_fn(img), axis=0)
    return imgs, original_img, original_size


def get_cam_model(model_class,
                  input_size=224,
                  last_conv_layer='activation_49',
                  pred_layer='fc1000'):
    model = model_class(input_shape=(input_size, input_size, 3))

    final_params = model.get_layer(pred_layer).get_weights()
    final_params = (final_params[0].reshape(
        1, 1, -1, N_CLASSES), final_params[1])

    last_conv_output = model.get_layer(last_conv_layer).output
    x = UpSampling2D(size=(32, 32), interpolation='bilinear')(
        last_conv_output)
    x = Conv2D(filters=N_CLASSES, kernel_size=(
        1, 1), name='predictions_2')(x)

    cam_model = Model(inputs=model.input,
                      outputs=[model.output, x])
    cam_model.get_layer('predictions_2').set_weights(final_params)
    return cam_model


def postprocess(preds, cams, top_k=1):
    idxes = np.argsort(preds[0])[-top_k:]
    class_activation_map = np.zeros_like(cams[0, :, :, 0])
    for i in idxes:
        class_activation_map += cams[0, :, :, i]
    return class_activation_map


# 1. load image
imgs, original_img, original_size = load_img(input_image,
                                             input_size=NETWORK_INPUT_SIZE,
                                             preprocess_fn=resnet.preprocess_input)

# 2. prediction
model = get_cam_model(resnet.ResNet50,
                      NETWORK_INPUT_SIZE,
                      LAST_CONV_LAYER,
                      PRED_LAYER)
preds, cams = model.predict(imgs)

# 4. post processing
class_activation_map = postprocess(preds, cams)

# 5. plot image+cam to original size
plt.imshow(original_img, alpha=0.5)
plt.imshow(cv2.resize(class_activation_map,
                      original_size), cmap='jet', alpha=0.5)
plt.show()
```