File: mnist_transfer_cnn.md

package info (click to toggle)
keras 2.3.1%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 9,288 kB
  • sloc: python: 48,266; javascript: 1,794; xml: 297; makefile: 36; sh: 30
file content (126 lines) | stat: -rw-r--r-- 3,629 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
Transfer learning toy example.

1 - Train a simple convnet on the MNIST dataset the first 5 digits [0..4].
2 - Freeze convolutional layers and fine-tune dense layers
   for the classification of digits [5..9].

Get to 99.8% test accuracy after 5 epochs
for the first five digits classifier
and 99.2% for the last five digits after transfer + fine-tuning.


```python
from __future__ import print_function

import datetime
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K

now = datetime.datetime.now

batch_size = 128
num_classes = 5
epochs = 5

# input image dimensions
img_rows, img_cols = 28, 28
# number of convolutional filters to use
filters = 32
# size of pooling area for max pooling
pool_size = 2
# convolution kernel size
kernel_size = 3

if K.image_data_format() == 'channels_first':
    input_shape = (1, img_rows, img_cols)
else:
    input_shape = (img_rows, img_cols, 1)


def train_model(model, train, test, num_classes):
    x_train = train[0].reshape((train[0].shape[0],) + input_shape)
    x_test = test[0].reshape((test[0].shape[0],) + input_shape)
    x_train = x_train.astype('float32')
    x_test = x_test.astype('float32')
    x_train /= 255
    x_test /= 255
    print('x_train shape:', x_train.shape)
    print(x_train.shape[0], 'train samples')
    print(x_test.shape[0], 'test samples')

    # convert class vectors to binary class matrices
    y_train = keras.utils.to_categorical(train[1], num_classes)
    y_test = keras.utils.to_categorical(test[1], num_classes)

    model.compile(loss='categorical_crossentropy',
                  optimizer='adadelta',
                  metrics=['accuracy'])

    t = now()
    model.fit(x_train, y_train,
              batch_size=batch_size,
              epochs=epochs,
              verbose=1,
              validation_data=(x_test, y_test))
    print('Training time: %s' % (now() - t))
    score = model.evaluate(x_test, y_test, verbose=0)
    print('Test score:', score[0])
    print('Test accuracy:', score[1])


# the data, split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()

# create two datasets one with digits below 5 and one with 5 and above
x_train_lt5 = x_train[y_train < 5]
y_train_lt5 = y_train[y_train < 5]
x_test_lt5 = x_test[y_test < 5]
y_test_lt5 = y_test[y_test < 5]

x_train_gte5 = x_train[y_train >= 5]
y_train_gte5 = y_train[y_train >= 5] - 5
x_test_gte5 = x_test[y_test >= 5]
y_test_gte5 = y_test[y_test >= 5] - 5

# define two groups of layers: feature (convolutions) and classification (dense)
feature_layers = [
    Conv2D(filters, kernel_size,
           padding='valid',
           input_shape=input_shape),
    Activation('relu'),
    Conv2D(filters, kernel_size),
    Activation('relu'),
    MaxPooling2D(pool_size=pool_size),
    Dropout(0.25),
    Flatten(),
]

classification_layers = [
    Dense(128),
    Activation('relu'),
    Dropout(0.5),
    Dense(num_classes),
    Activation('softmax')
]

# create complete model
model = Sequential(feature_layers + classification_layers)

# train model for 5-digit classification [0..4]
train_model(model,
            (x_train_lt5, y_train_lt5),
            (x_test_lt5, y_test_lt5), num_classes)

# freeze feature layers and rebuild model
for l in feature_layers:
    l.trainable = False

# transfer: train dense layers for new classification task [5..9]
train_model(model,
            (x_train_gte5, y_train_gte5),
            (x_test_gte5, y_test_gte5), num_classes)
```