File: initializers.md

package info (click to toggle)
keras 2.3.1%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 9,288 kB
  • sloc: python: 48,266; javascript: 1,794; xml: 297; makefile: 36; sh: 30
file content (399 lines) | stat: -rw-r--r-- 9,946 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
## Usage of initializers

Initializations define the way to set the initial random weights of Keras layers.

The keyword arguments used for passing initializers to layers will depend on the layer. Usually it is simply `kernel_initializer` and `bias_initializer`:

```python
model.add(Dense(64,
                kernel_initializer='random_uniform',
                bias_initializer='zeros'))
```

## Available initializers

The following built-in initializers are available as part of the `keras.initializers` module:

<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/initializers.py#L14)</span>
### Initializer

```python
keras.initializers.Initializer()
```

Initializer base class: all initializers inherit from this class.

----

<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/initializers.py#L33)</span>
### Zeros

```python
keras.initializers.Zeros()
```

Initializer that generates tensors initialized to 0.

----

<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/initializers.py#L41)</span>
### Ones

```python
keras.initializers.Ones()
```

Initializer that generates tensors initialized to 1.

----

<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/initializers.py#L49)</span>
### Constant

```python
keras.initializers.Constant(value=0)
```

Initializer that generates tensors initialized to a constant value.

__Arguments__

- __value__: float; the value of the generator tensors.
    
----

<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/initializers.py#L66)</span>
### RandomNormal

```python
keras.initializers.RandomNormal(mean=0.0, stddev=0.05, seed=None)
```

Initializer that generates tensors with a normal distribution.

__Arguments__

- __mean__: a python scalar or a scalar tensor. Mean of the random values
  to generate.
- __stddev__: a python scalar or a scalar tensor. Standard deviation of the
  random values to generate.
- __seed__: A Python integer. Used to seed the random generator.
    
----

<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/initializers.py#L97)</span>
### RandomUniform

```python
keras.initializers.RandomUniform(minval=-0.05, maxval=0.05, seed=None)
```

Initializer that generates tensors with a uniform distribution.

__Arguments__

- __minval__: A python scalar or a scalar tensor. Lower bound of the range
  of random values to generate.
- __maxval__: A python scalar or a scalar tensor. Upper bound of the range
  of random values to generate.  Defaults to 1 for float types.
- __seed__: A Python integer. Used to seed the random generator.
    
----

<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/initializers.py#L128)</span>
### TruncatedNormal

```python
keras.initializers.TruncatedNormal(mean=0.0, stddev=0.05, seed=None)
```

Initializer that generates a truncated normal distribution.

These values are similar to values from a `RandomNormal`
except that values more than two standard deviations from the mean
are discarded and redrawn. This is the recommended initializer for
neural network weights and filters.

__Arguments__

- __mean__: a python scalar or a scalar tensor. Mean of the random values
  to generate.
- __stddev__: a python scalar or a scalar tensor. Standard deviation of the
  random values to generate.
- __seed__: A Python integer. Used to seed the random generator.
    
----

<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/initializers.py#L164)</span>
### VarianceScaling

```python
keras.initializers.VarianceScaling(scale=1.0, mode='fan_in', distribution='normal', seed=None)
```

Initializer capable of adapting its scale to the shape of weights.

With `distribution="normal"`, samples are drawn from a truncated normal
distribution centered on zero, with `stddev = sqrt(scale / n)` where n is:

- number of input units in the weight tensor, if mode = "fan_in"
- number of output units, if mode = "fan_out"
- average of the numbers of input and output units, if mode = "fan_avg"

With `distribution="uniform"`,
samples are drawn from a uniform distribution
within [-limit, limit], with `limit = sqrt(3 * scale / n)`.

__Arguments__

- __scale__: Scaling factor (positive float).
- __mode__: One of "fan_in", "fan_out", "fan_avg".
- __distribution__: Random distribution to use. One of "normal", "uniform".
- __seed__: A Python integer. Used to seed the random generator.

__Raises__

- __ValueError__: In case of an invalid value for the "scale", mode" or
  "distribution" arguments.
    
----

<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/initializers.py#L241)</span>
### Orthogonal

```python
keras.initializers.Orthogonal(gain=1.0, seed=None)
```

Initializer that generates a random orthogonal matrix.

__Arguments__

- __gain__: Multiplicative factor to apply to the orthogonal matrix.
- __seed__: A Python integer. Used to seed the random generator.

__References__

- [Exact solutions to the nonlinear dynamics of learning in deep
   linear neural networks](http://arxiv.org/abs/1312.6120)
    
----

<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/initializers.py#L281)</span>
### Identity

```python
keras.initializers.Identity(gain=1.0)
```

Initializer that generates the identity matrix.

Only use for 2D matrices.
If the desired matrix is not square, it gets padded
with zeros for the additional rows/columns.

__Arguments__

- __gain__: Multiplicative factor to apply to the identity matrix.
    
----

### lecun_uniform


```python
keras.initializers.lecun_uniform(seed=None)
```


LeCun uniform initializer.

It draws samples from a uniform distribution within [-limit, limit]
where `limit` is `sqrt(3 / fan_in)`
where `fan_in` is the number of input units in the weight tensor.

__Arguments__

- __seed__: A Python integer. Used to seed the random generator.

__Returns__

An initializer.

__References__

- [Efficient BackProp](http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf)
    
----

### glorot_normal


```python
keras.initializers.glorot_normal(seed=None)
```


Glorot normal initializer, also called Xavier normal initializer.

It draws samples from a truncated normal distribution centered on 0
with `stddev = sqrt(2 / (fan_in + fan_out))`
where `fan_in` is the number of input units in the weight tensor
and `fan_out` is the number of output units in the weight tensor.

__Arguments__

- __seed__: A Python integer. Used to seed the random generator.

__Returns__

An initializer.

__References__

- [Understanding the difficulty of training deep feedforward neural
   networks](http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf)
    
----

### glorot_uniform


```python
keras.initializers.glorot_uniform(seed=None)
```


Glorot uniform initializer, also called Xavier uniform initializer.

It draws samples from a uniform distribution within [-limit, limit]
where `limit` is `sqrt(6 / (fan_in + fan_out))`
where `fan_in` is the number of input units in the weight tensor
and `fan_out` is the number of output units in the weight tensor.

__Arguments__

- __seed__: A Python integer. Used to seed the random generator.

__Returns__

An initializer.

__References__

- [Understanding the difficulty of training deep feedforward neural
   networks](http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf)
    
----

### he_normal


```python
keras.initializers.he_normal(seed=None)
```


He normal initializer.

It draws samples from a truncated normal distribution centered on 0
with `stddev = sqrt(2 / fan_in)`
where `fan_in` is the number of input units in the weight tensor.

__Arguments__

- __seed__: A Python integer. Used to seed the random generator.

__Returns__

An initializer.

__References__

- [Delving Deep into Rectifiers: Surpassing Human-Level Performance on
   ImageNet Classification](http://arxiv.org/abs/1502.01852)
    
----

### lecun_normal


```python
keras.initializers.lecun_normal(seed=None)
```


LeCun normal initializer.

It draws samples from a truncated normal distribution centered on 0
with `stddev = sqrt(1 / fan_in)`
where `fan_in` is the number of input units in the weight tensor.

__Arguments__

- __seed__: A Python integer. Used to seed the random generator.

__Returns__

An initializer.

__References__

- [Self-Normalizing Neural Networks](https://arxiv.org/abs/1706.02515)
- [Efficient Backprop](http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf)
    
----

### he_uniform


```python
keras.initializers.he_uniform(seed=None)
```


He uniform variance scaling initializer.

It draws samples from a uniform distribution within [-limit, limit]
where `limit` is `sqrt(6 / fan_in)`
where `fan_in` is the number of input units in the weight tensor.

__Arguments__

- __seed__: A Python integer. Used to seed the random generator.

__Returns__

An initializer.

__References__

- [Delving Deep into Rectifiers: Surpassing Human-Level Performance on
   ImageNet Classification](http://arxiv.org/abs/1502.01852)
    


An initializer may be passed as a string (must match one of the available initializers above), or as a callable:

```python
from keras import initializers

model.add(Dense(64, kernel_initializer=initializers.random_normal(stddev=0.01)))

# also works; will use the default parameters.
model.add(Dense(64, kernel_initializer='random_normal'))
```


## Using custom initializers

If passing a custom callable, then it must take the argument `shape` (shape of the variable to initialize) and `dtype` (dtype of generated values):

```python
from keras import backend as K

def my_init(shape, dtype=None):
    return K.random_normal(shape, dtype=dtype)

model.add(Dense(64, kernel_initializer=my_init))
```