1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
|
## Usage of initializers
Initializations define the way to set the initial random weights of Keras layers.
The keyword arguments used for passing initializers to layers will depend on the layer. Usually it is simply `kernel_initializer` and `bias_initializer`:
```python
model.add(Dense(64,
kernel_initializer='random_uniform',
bias_initializer='zeros'))
```
## Available initializers
The following built-in initializers are available as part of the `keras.initializers` module:
<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/initializers.py#L14)</span>
### Initializer
```python
keras.initializers.Initializer()
```
Initializer base class: all initializers inherit from this class.
----
<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/initializers.py#L33)</span>
### Zeros
```python
keras.initializers.Zeros()
```
Initializer that generates tensors initialized to 0.
----
<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/initializers.py#L41)</span>
### Ones
```python
keras.initializers.Ones()
```
Initializer that generates tensors initialized to 1.
----
<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/initializers.py#L49)</span>
### Constant
```python
keras.initializers.Constant(value=0)
```
Initializer that generates tensors initialized to a constant value.
__Arguments__
- __value__: float; the value of the generator tensors.
----
<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/initializers.py#L66)</span>
### RandomNormal
```python
keras.initializers.RandomNormal(mean=0.0, stddev=0.05, seed=None)
```
Initializer that generates tensors with a normal distribution.
__Arguments__
- __mean__: a python scalar or a scalar tensor. Mean of the random values
to generate.
- __stddev__: a python scalar or a scalar tensor. Standard deviation of the
random values to generate.
- __seed__: A Python integer. Used to seed the random generator.
----
<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/initializers.py#L97)</span>
### RandomUniform
```python
keras.initializers.RandomUniform(minval=-0.05, maxval=0.05, seed=None)
```
Initializer that generates tensors with a uniform distribution.
__Arguments__
- __minval__: A python scalar or a scalar tensor. Lower bound of the range
of random values to generate.
- __maxval__: A python scalar or a scalar tensor. Upper bound of the range
of random values to generate. Defaults to 1 for float types.
- __seed__: A Python integer. Used to seed the random generator.
----
<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/initializers.py#L128)</span>
### TruncatedNormal
```python
keras.initializers.TruncatedNormal(mean=0.0, stddev=0.05, seed=None)
```
Initializer that generates a truncated normal distribution.
These values are similar to values from a `RandomNormal`
except that values more than two standard deviations from the mean
are discarded and redrawn. This is the recommended initializer for
neural network weights and filters.
__Arguments__
- __mean__: a python scalar or a scalar tensor. Mean of the random values
to generate.
- __stddev__: a python scalar or a scalar tensor. Standard deviation of the
random values to generate.
- __seed__: A Python integer. Used to seed the random generator.
----
<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/initializers.py#L164)</span>
### VarianceScaling
```python
keras.initializers.VarianceScaling(scale=1.0, mode='fan_in', distribution='normal', seed=None)
```
Initializer capable of adapting its scale to the shape of weights.
With `distribution="normal"`, samples are drawn from a truncated normal
distribution centered on zero, with `stddev = sqrt(scale / n)` where n is:
- number of input units in the weight tensor, if mode = "fan_in"
- number of output units, if mode = "fan_out"
- average of the numbers of input and output units, if mode = "fan_avg"
With `distribution="uniform"`,
samples are drawn from a uniform distribution
within [-limit, limit], with `limit = sqrt(3 * scale / n)`.
__Arguments__
- __scale__: Scaling factor (positive float).
- __mode__: One of "fan_in", "fan_out", "fan_avg".
- __distribution__: Random distribution to use. One of "normal", "uniform".
- __seed__: A Python integer. Used to seed the random generator.
__Raises__
- __ValueError__: In case of an invalid value for the "scale", mode" or
"distribution" arguments.
----
<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/initializers.py#L241)</span>
### Orthogonal
```python
keras.initializers.Orthogonal(gain=1.0, seed=None)
```
Initializer that generates a random orthogonal matrix.
__Arguments__
- __gain__: Multiplicative factor to apply to the orthogonal matrix.
- __seed__: A Python integer. Used to seed the random generator.
__References__
- [Exact solutions to the nonlinear dynamics of learning in deep
linear neural networks](http://arxiv.org/abs/1312.6120)
----
<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/initializers.py#L281)</span>
### Identity
```python
keras.initializers.Identity(gain=1.0)
```
Initializer that generates the identity matrix.
Only use for 2D matrices.
If the desired matrix is not square, it gets padded
with zeros for the additional rows/columns.
__Arguments__
- __gain__: Multiplicative factor to apply to the identity matrix.
----
### lecun_uniform
```python
keras.initializers.lecun_uniform(seed=None)
```
LeCun uniform initializer.
It draws samples from a uniform distribution within [-limit, limit]
where `limit` is `sqrt(3 / fan_in)`
where `fan_in` is the number of input units in the weight tensor.
__Arguments__
- __seed__: A Python integer. Used to seed the random generator.
__Returns__
An initializer.
__References__
- [Efficient BackProp](http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf)
----
### glorot_normal
```python
keras.initializers.glorot_normal(seed=None)
```
Glorot normal initializer, also called Xavier normal initializer.
It draws samples from a truncated normal distribution centered on 0
with `stddev = sqrt(2 / (fan_in + fan_out))`
where `fan_in` is the number of input units in the weight tensor
and `fan_out` is the number of output units in the weight tensor.
__Arguments__
- __seed__: A Python integer. Used to seed the random generator.
__Returns__
An initializer.
__References__
- [Understanding the difficulty of training deep feedforward neural
networks](http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf)
----
### glorot_uniform
```python
keras.initializers.glorot_uniform(seed=None)
```
Glorot uniform initializer, also called Xavier uniform initializer.
It draws samples from a uniform distribution within [-limit, limit]
where `limit` is `sqrt(6 / (fan_in + fan_out))`
where `fan_in` is the number of input units in the weight tensor
and `fan_out` is the number of output units in the weight tensor.
__Arguments__
- __seed__: A Python integer. Used to seed the random generator.
__Returns__
An initializer.
__References__
- [Understanding the difficulty of training deep feedforward neural
networks](http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf)
----
### he_normal
```python
keras.initializers.he_normal(seed=None)
```
He normal initializer.
It draws samples from a truncated normal distribution centered on 0
with `stddev = sqrt(2 / fan_in)`
where `fan_in` is the number of input units in the weight tensor.
__Arguments__
- __seed__: A Python integer. Used to seed the random generator.
__Returns__
An initializer.
__References__
- [Delving Deep into Rectifiers: Surpassing Human-Level Performance on
ImageNet Classification](http://arxiv.org/abs/1502.01852)
----
### lecun_normal
```python
keras.initializers.lecun_normal(seed=None)
```
LeCun normal initializer.
It draws samples from a truncated normal distribution centered on 0
with `stddev = sqrt(1 / fan_in)`
where `fan_in` is the number of input units in the weight tensor.
__Arguments__
- __seed__: A Python integer. Used to seed the random generator.
__Returns__
An initializer.
__References__
- [Self-Normalizing Neural Networks](https://arxiv.org/abs/1706.02515)
- [Efficient Backprop](http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf)
----
### he_uniform
```python
keras.initializers.he_uniform(seed=None)
```
He uniform variance scaling initializer.
It draws samples from a uniform distribution within [-limit, limit]
where `limit` is `sqrt(6 / fan_in)`
where `fan_in` is the number of input units in the weight tensor.
__Arguments__
- __seed__: A Python integer. Used to seed the random generator.
__Returns__
An initializer.
__References__
- [Delving Deep into Rectifiers: Surpassing Human-Level Performance on
ImageNet Classification](http://arxiv.org/abs/1502.01852)
An initializer may be passed as a string (must match one of the available initializers above), or as a callable:
```python
from keras import initializers
model.add(Dense(64, kernel_initializer=initializers.random_normal(stddev=0.01)))
# also works; will use the default parameters.
model.add(Dense(64, kernel_initializer='random_normal'))
```
## Using custom initializers
If passing a custom callable, then it must take the argument `shape` (shape of the variable to initialize) and `dtype` (dtype of generated values):
```python
from keras import backend as K
def my_init(shape, dtype=None):
return K.random_normal(shape, dtype=dtype)
model.add(Dense(64, kernel_initializer=my_init))
```
|