1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
|
<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/layers/advanced_activations.py#L19)</span>
### LeakyReLU
```python
keras.layers.LeakyReLU(alpha=0.3)
```
Leaky version of a Rectified Linear Unit.
It allows a small gradient when the unit is not active:
`f(x) = alpha * x for x < 0`,
`f(x) = x for x >= 0`.
__Input shape__
Arbitrary. Use the keyword argument `input_shape`
(tuple of integers, does not include the samples axis)
when using this layer as the first layer in a model.
__Output shape__
Same shape as the input.
__Arguments__
- __alpha__: float >= 0. Negative slope coefficient.
__References__
- [Rectifier Nonlinearities Improve Neural Network Acoustic Models](
https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf)
----
<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/layers/advanced_activations.py#L59)</span>
### PReLU
```python
keras.layers.PReLU(alpha_initializer='zeros', alpha_regularizer=None, alpha_constraint=None, shared_axes=None)
```
Parametric Rectified Linear Unit.
It follows:
`f(x) = alpha * x for x < 0`,
`f(x) = x for x >= 0`,
where `alpha` is a learned array with the same shape as x.
__Input shape__
Arbitrary. Use the keyword argument `input_shape`
(tuple of integers, does not include the samples axis)
when using this layer as the first layer in a model.
__Output shape__
Same shape as the input.
__Arguments__
- __alpha_initializer__: initializer function for the weights.
- __alpha_regularizer__: regularizer for the weights.
- __alpha_constraint__: constraint for the weights.
- __shared_axes__: the axes along which to share learnable
parameters for the activation function.
For example, if the incoming feature maps
are from a 2D convolution
with output shape `(batch, height, width, channels)`,
and you wish to share parameters across space
so that each filter only has one set of parameters,
set `shared_axes=[1, 2]`.
__References__
- [Delving Deep into Rectifiers: Surpassing Human-Level Performance on
ImageNet Classification](https://arxiv.org/abs/1502.01852)
----
<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/layers/advanced_activations.py#L153)</span>
### ELU
```python
keras.layers.ELU(alpha=1.0)
```
Exponential Linear Unit.
It follows:
`f(x) = alpha * (exp(x) - 1.) for x < 0`,
`f(x) = x for x >= 0`.
__Input shape__
Arbitrary. Use the keyword argument `input_shape`
(tuple of integers, does not include the samples axis)
when using this layer as the first layer in a model.
__Output shape__
Same shape as the input.
__Arguments__
- __alpha__: scale for the negative factor.
__References__
- [Fast and Accurate Deep Network Learning by Exponential Linear Units
(ELUs)](https://arxiv.org/abs/1511.07289v1)
----
<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/layers/advanced_activations.py#L193)</span>
### ThresholdedReLU
```python
keras.layers.ThresholdedReLU(theta=1.0)
```
Thresholded Rectified Linear Unit.
It follows:
`f(x) = x for x > theta`,
`f(x) = 0 otherwise`.
__Input shape__
Arbitrary. Use the keyword argument `input_shape`
(tuple of integers, does not include the samples axis)
when using this layer as the first layer in a model.
__Output shape__
Same shape as the input.
__Arguments__
- __theta__: float >= 0. Threshold location of activation.
__References__
- [Zero-Bias Autoencoders and the Benefits of Co-Adapting Features](
https://arxiv.org/abs/1402.3337)
----
<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/layers/advanced_activations.py#L233)</span>
### Softmax
```python
keras.layers.Softmax(axis=-1)
```
Softmax activation function.
__Input shape__
Arbitrary. Use the keyword argument `input_shape`
(tuple of integers, does not include the samples axis)
when using this layer as the first layer in a model.
__Output shape__
Same shape as the input.
__Arguments__
- __axis__: Integer, axis along which the softmax normalization is applied.
----
<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/layers/advanced_activations.py#L265)</span>
### ReLU
```python
keras.layers.ReLU(max_value=None, negative_slope=0.0, threshold=0.0)
```
Rectified Linear Unit activation function.
With default values, it returns element-wise `max(x, 0)`.
Otherwise, it follows:
`f(x) = max_value` for `x >= max_value`,
`f(x) = x` for `threshold <= x < max_value`,
`f(x) = negative_slope * (x - threshold)` otherwise.
__Input shape__
Arbitrary. Use the keyword argument `input_shape`
(tuple of integers, does not include the samples axis)
when using this layer as the first layer in a model.
__Output shape__
Same shape as the input.
__Arguments__
- __max_value__: float >= 0. Maximum activation value.
- __negative_slope__: float >= 0. Negative slope coefficient.
- __threshold__: float. Threshold value for thresholded activation.
|