File: core.md

package info (click to toggle)
keras 2.3.1%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 9,288 kB
  • sloc: python: 48,266; javascript: 1,794; xml: 297; makefile: 36; sh: 30
file content (637 lines) | stat: -rw-r--r-- 18,833 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/layers/core.py#L796)</span>
### Dense

```python
keras.layers.Dense(units, activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None)
```

Just your regular densely-connected NN layer.

`Dense` implements the operation:
`output = activation(dot(input, kernel) + bias)`
where `activation` is the element-wise activation function
passed as the `activation` argument, `kernel` is a weights matrix
created by the layer, and `bias` is a bias vector created by the layer
(only applicable if `use_bias` is `True`).

Note: if the input to the layer has a rank greater than 2, then
it is flattened prior to the initial dot product with `kernel`.

__Example__


```python
# as first layer in a sequential model:
model = Sequential()
model.add(Dense(32, input_shape=(16,)))
# now the model will take as input arrays of shape (*, 16)
# and output arrays of shape (*, 32)

# after the first layer, you don't need to specify
# the size of the input anymore:
model.add(Dense(32))
```

__Arguments__

- __units__: Positive integer, dimensionality of the output space.
- __activation__: Activation function to use
    (see [activations](../activations.md)).
    If you don't specify anything, no activation is applied
    (ie. "linear" activation: `a(x) = x`).
- __use_bias__: Boolean, whether the layer uses a bias vector.
- __kernel_initializer__: Initializer for the `kernel` weights matrix
    (see [initializers](../initializers.md)).
- __bias_initializer__: Initializer for the bias vector
    (see [initializers](../initializers.md)).
- __kernel_regularizer__: Regularizer function applied to
    the `kernel` weights matrix
    (see [regularizer](../regularizers.md)).
- __bias_regularizer__: Regularizer function applied to the bias vector
    (see [regularizer](../regularizers.md)).
- __activity_regularizer__: Regularizer function applied to
    the output of the layer (its "activation").
    (see [regularizer](../regularizers.md)).
- __kernel_constraint__: Constraint function applied to
    the `kernel` weights matrix
    (see [constraints](../constraints.md)).
- __bias_constraint__: Constraint function applied to the bias vector
    (see [constraints](../constraints.md)).

__Input shape__

nD tensor with shape: `(batch_size, ..., input_dim)`.
The most common situation would be
a 2D input with shape `(batch_size, input_dim)`.

__Output shape__

nD tensor with shape: `(batch_size, ..., units)`.
For instance, for a 2D input with shape `(batch_size, input_dim)`,
the output would have shape `(batch_size, units)`.
    
----

<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/layers/core.py#L277)</span>
### Activation

```python
keras.layers.Activation(activation)
```

Applies an activation function to an output.

__Arguments__

- __activation__: name of activation function to use
    (see: [activations](../activations.md)),
    or alternatively, a Theano or TensorFlow operation.

__Input shape__

Arbitrary. Use the keyword argument `input_shape`
(tuple of integers, does not include the samples axis)
when using this layer as the first layer in a model.

__Output shape__

Same shape as input.
    
----

<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/layers/core.py#L81)</span>
### Dropout

```python
keras.layers.Dropout(rate, noise_shape=None, seed=None)
```

Applies Dropout to the input.

Dropout consists in randomly setting
a fraction `rate` of input units to 0 at each update during training time,
which helps prevent overfitting.

__Arguments__

- __rate__: float between 0 and 1. Fraction of the input units to drop.
- __noise_shape__: 1D integer tensor representing the shape of the
    binary dropout mask that will be multiplied with the input.
    For instance, if your inputs have shape
    `(batch_size, timesteps, features)` and
    you want the dropout mask to be the same for all timesteps,
    you can use `noise_shape=(batch_size, 1, features)`.
- __seed__: A Python integer to use as random seed.

__References__

- [Dropout: A Simple Way to Prevent Neural Networks from Overfitting](
   http://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf)
    
----

<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/layers/core.py#L462)</span>
### Flatten

```python
keras.layers.Flatten(data_format=None)
```

Flattens the input. Does not affect the batch size.

__Arguments__

- __data_format__: A string,
    one of `channels_last` (default) or `channels_first`.
    The ordering of the dimensions in the inputs.
    The purpose of this argument is to preserve weight
    ordering when switching a model from one data format
    to another.
    `channels_last` corresponds to inputs with shape
    `(batch, ..., channels)` while `channels_first` corresponds to
    inputs with shape `(batch, channels, ...)`.
    It defaults to the `image_data_format` value found in your
    Keras config file at `~/.keras/keras.json`.
    If you never set it, then it will be "channels_last".

__Example__


```python
model = Sequential()
model.add(Conv2D(64, (3, 3),
                 input_shape=(3, 32, 32), padding='same',))
# now: model.output_shape == (None, 64, 32, 32)

model.add(Flatten())
# now: model.output_shape == (None, 65536)
```
    
----

<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/engine/input_layer.py#L114)</span>
### Input

```python
keras.engine.input_layer.Input()
```

`Input()` is used to instantiate a Keras tensor.

A Keras tensor is a tensor object from the underlying backend
(Theano, TensorFlow or CNTK), which we augment with certain
attributes that allow us to build a Keras model
just by knowing the inputs and outputs of the model.

For instance, if a, b and c are Keras tensors,
it becomes possible to do:
`model = Model(input=[a, b], output=c)`

The added Keras attributes are:
`_keras_shape`: Integer shape tuple propagated
via Keras-side shape inference.
`_keras_history`: Last layer applied to the tensor.
the entire layer graph is retrievable from that layer,
recursively.

__Arguments__

- __shape__: A shape tuple (integer), not including the batch size.
    For instance, `shape=(32,)` indicates that the expected input
    will be batches of 32-dimensional vectors.
- __batch_shape__: A shape tuple (integer), including the batch size.
    For instance, `batch_shape=(10, 32)` indicates that
    the expected input will be batches of 10 32-dimensional vectors.
    `batch_shape=(None, 32)` indicates batches of an arbitrary number
    of 32-dimensional vectors.
- __name__: An optional name string for the layer.
    Should be unique in a model (do not reuse the same name twice).
    It will be autogenerated if it isn't provided.
- __dtype__: The data type expected by the input, as a string
    (`float32`, `float64`, `int32`...)
- __sparse__: A boolean specifying whether the placeholder
    to be created is sparse.
- __tensor__: Optional existing tensor to wrap into the `Input` layer.
    If set, the layer will not create a placeholder tensor.

__Returns__

A tensor.

__Example__


```python
# this is a logistic regression in Keras
x = Input(shape=(32,))
y = Dense(16, activation='softmax')(x)
model = Model(x, y)
```
    
----

<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/layers/core.py#L311)</span>
### Reshape

```python
keras.layers.Reshape(target_shape)
```

Reshapes an output to a certain shape.

__Arguments__

- __target_shape__: target shape. Tuple of integers.
    Does not include the batch axis.

__Input shape__

Arbitrary, although all dimensions in the input shaped must be fixed.
Use the keyword argument `input_shape`
(tuple of integers, does not include the batch axis)
when using this layer as the first layer in a model.

__Output shape__

`(batch_size,) + target_shape`

__Example__


```python
# as first layer in a Sequential model
model = Sequential()
model.add(Reshape((3, 4), input_shape=(12,)))
# now: model.output_shape == (None, 3, 4)
# note: `None` is the batch dimension

# as intermediate layer in a Sequential model
model.add(Reshape((6, 2)))
# now: model.output_shape == (None, 6, 2)

# also supports shape inference using `-1` as dimension
model.add(Reshape((-1, 2, 2)))
# now: model.output_shape == (None, 3, 2, 2)
```
    
----

<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/layers/core.py#L410)</span>
### Permute

```python
keras.layers.Permute(dims)
```

Permutes the dimensions of the input according to a given pattern.

Useful for e.g. connecting RNNs and convnets together.

__Example__


```python
model = Sequential()
model.add(Permute((2, 1), input_shape=(10, 64)))
# now: model.output_shape == (None, 64, 10)
# note: `None` is the batch dimension
```

__Arguments__

- __dims__: Tuple of integers. Permutation pattern, does not include the
    samples dimension. Indexing starts at 1.
    For instance, `(2, 1)` permutes the first and second dimension
    of the input.

__Input shape__

Arbitrary. Use the keyword argument `input_shape`
(tuple of integers, does not include the samples axis)
when using this layer as the first layer in a model.

__Output shape__

Same as the input shape, but with the dimensions re-ordered according
to the specified pattern.
    
----

<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/layers/core.py#L524)</span>
### RepeatVector

```python
keras.layers.RepeatVector(n)
```

Repeats the input n times.

__Example__


```python
model = Sequential()
model.add(Dense(32, input_dim=32))
# now: model.output_shape == (None, 32)
# note: `None` is the batch dimension

model.add(RepeatVector(3))
# now: model.output_shape == (None, 3, 32)
```

__Arguments__

- __n__: integer, repetition factor.

__Input shape__

2D tensor of shape `(num_samples, features)`.

__Output shape__

3D tensor of shape `(num_samples, n, features)`.
    
----

<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/layers/core.py#L566)</span>
### Lambda

```python
keras.layers.Lambda(function, output_shape=None, mask=None, arguments=None)
```

Wraps arbitrary expression as a `Layer` object.

__Examples__


```python
# add a x -> x^2 layer
model.add(Lambda(lambda x: x ** 2))
```
```python
# add a layer that returns the concatenation
# of the positive part of the input and
# the opposite of the negative part

def antirectifier(x):
    x -= K.mean(x, axis=1, keepdims=True)
    x = K.l2_normalize(x, axis=1)
    pos = K.relu(x)
    neg = K.relu(-x)
    return K.concatenate([pos, neg], axis=1)

def antirectifier_output_shape(input_shape):
    shape = list(input_shape)
    assert len(shape) == 2  # only valid for 2D tensors
    shape[-1] *= 2
    return tuple(shape)

model.add(Lambda(antirectifier,
                 output_shape=antirectifier_output_shape))
```
```python
# add a layer that returns the hadamard product
# and sum of it from two input tensors

def hadamard_product_sum(tensors):
    out1 = tensors[0] * tensors[1]
    out2 = K.sum(out1, axis=-1)
    return [out1, out2]

def hadamard_product_sum_output_shape(input_shapes):
    shape1 = list(input_shapes[0])
    shape2 = list(input_shapes[1])
    assert shape1 == shape2  # else hadamard product isn't possible
    return [tuple(shape1), tuple(shape2[:-1])]

x1 = Dense(32)(input_1)
x2 = Dense(32)(input_2)
layer = Lambda(hadamard_product_sum, hadamard_product_sum_output_shape)
x_hadamard, x_sum = layer([x1, x2])
```

__Arguments__

- __function__: The function to be evaluated.
    Takes input tensor or list of tensors as first argument.
- __output_shape__: Expected output shape from function.
    Only relevant when using Theano.
    Can be a tuple or function.
    If a tuple, it only specifies the first dimension onward;
         sample dimension is assumed either the same as the input:
         `output_shape = (input_shape[0], ) + output_shape`
         or, the input is `None` and
         the sample dimension is also `None`:
         `output_shape = (None, ) + output_shape`
    If a function, it specifies the entire shape as a function of the
    input shape: `output_shape = f(input_shape)`
- __mask__: Either None (indicating no masking) or a Tensor indicating the
  input mask for Embedding.
- __arguments__: optional dictionary of keyword arguments to be passed
    to the function.

__Input shape__

Arbitrary. Use the keyword argument input_shape
(tuple of integers, does not include the samples axis)
when using this layer as the first layer in a model.

__Output shape__

Specified by `output_shape` argument
(or auto-inferred when using TensorFlow or CNTK).
    
----

<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/layers/core.py#L940)</span>
### ActivityRegularization

```python
keras.layers.ActivityRegularization(l1=0.0, l2=0.0)
```

Layer that applies an update to the cost function based input activity.

__Arguments__

- __l1__: L1 regularization factor (positive float).
- __l2__: L2 regularization factor (positive float).

__Input shape__

Arbitrary. Use the keyword argument `input_shape`
(tuple of integers, does not include the samples axis)
when using this layer as the first layer in a model.

__Output shape__

Same shape as input.
    
----

<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/layers/core.py#L28)</span>
### Masking

```python
keras.layers.Masking(mask_value=0.0)
```

Masks a sequence by using a mask value to skip timesteps.

If all features for a given sample timestep are equal to `mask_value`,
then the sample timestep will be masked (skipped) in all downstream layers
(as long as they support masking).

If any downstream layer does not support masking yet receives such
an input mask, an exception will be raised.

__Example__


Consider a Numpy data array `x` of shape `(samples, timesteps, features)`,
to be fed to an LSTM layer.
You want to mask sample #0 at timestep #3, and sample #2 at timestep #5,
because you lack features for these sample timesteps. You can do:

- set `x[0, 3, :] = 0.` and `x[2, 5, :] = 0.`
- insert a `Masking` layer with `mask_value=0.` before the LSTM layer:

```python
model = Sequential()
model.add(Masking(mask_value=0., input_shape=(timesteps, features)))
model.add(LSTM(32))
```

__Arguments__

- __mask_value__: Either None or mask value to skip
    
----

<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/layers/core.py#L141)</span>
### SpatialDropout1D

```python
keras.layers.SpatialDropout1D(rate)
```

Spatial 1D version of Dropout.

This version performs the same function as Dropout, however it drops
entire 1D feature maps instead of individual elements. If adjacent frames
within feature maps are strongly correlated (as is normally the case in
early convolution layers) then regular dropout will not regularize the
activations and will otherwise just result in an effective learning rate
decrease. In this case, SpatialDropout1D will help promote independence
between feature maps and should be used instead.

__Arguments__

- __rate__: float between 0 and 1. Fraction of the input units to drop.

__Input shape__

3D tensor with shape:
`(samples, timesteps, channels)`

__Output shape__

Same as input

__References__

- [Efficient Object Localization Using Convolutional Networks](
   https://arxiv.org/abs/1411.4280)
    
----

<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/layers/core.py#L178)</span>
### SpatialDropout2D

```python
keras.layers.SpatialDropout2D(rate, data_format=None)
```

Spatial 2D version of Dropout.

This version performs the same function as Dropout, however it drops
entire 2D feature maps instead of individual elements. If adjacent pixels
within feature maps are strongly correlated (as is normally the case in
early convolution layers) then regular dropout will not regularize the
activations and will otherwise just result in an effective learning rate
decrease. In this case, SpatialDropout2D will help promote independence
between feature maps and should be used instead.

__Arguments__

- __rate__: float between 0 and 1. Fraction of the input units to drop.
- __data_format__: 'channels_first' or 'channels_last'.
    In 'channels_first' mode, the channels dimension
    (the depth) is at index 1,
    in 'channels_last' mode is it at index 3.
    It defaults to the `image_data_format` value found in your
    Keras config file at `~/.keras/keras.json`.
    If you never set it, then it will be "channels_last".

__Input shape__

4D tensor with shape:
`(samples, channels, rows, cols)` if data_format='channels_first'
or 4D tensor with shape:
`(samples, rows, cols, channels)` if data_format='channels_last'.

__Output shape__

Same as input

__References__

- [Efficient Object Localization Using Convolutional Networks](
   https://arxiv.org/abs/1411.4280)
    
----

<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/layers/core.py#L228)</span>
### SpatialDropout3D

```python
keras.layers.SpatialDropout3D(rate, data_format=None)
```

Spatial 3D version of Dropout.

This version performs the same function as Dropout, however it drops
entire 3D feature maps instead of individual elements. If adjacent voxels
within feature maps are strongly correlated (as is normally the case in
early convolution layers) then regular dropout will not regularize the
activations and will otherwise just result in an effective learning rate
decrease. In this case, SpatialDropout3D will help promote independence
between feature maps and should be used instead.

__Arguments__

- __rate__: float between 0 and 1. Fraction of the input units to drop.
- __data_format__: 'channels_first' or 'channels_last'.
    In 'channels_first' mode, the channels dimension (the depth)
    is at index 1, in 'channels_last' mode is it at index 4.
    It defaults to the `image_data_format` value found in your
    Keras config file at `~/.keras/keras.json`.
    If you never set it, then it will be "channels_last".

__Input shape__

5D tensor with shape:
`(samples, channels, dim1, dim2, dim3)` if data_format='channels_first'
or 5D tensor with shape:
`(samples, dim1, dim2, dim3, channels)` if data_format='channels_last'.

__Output shape__

Same as input

__References__

- [Efficient Object Localization Using Convolutional Networks](
   https://arxiv.org/abs/1411.4280)