1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
|
<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/layers/local.py#L19)</span>
### LocallyConnected1D
```python
keras.layers.LocallyConnected1D(filters, kernel_size, strides=1, padding='valid', data_format=None, activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None)
```
Locally-connected layer for 1D inputs.
The `LocallyConnected1D` layer works similarly to
the `Conv1D` layer, except that weights are unshared,
that is, a different set of filters is applied at each different patch
of the input.
__Example__
```python
# apply a unshared weight convolution 1d of length 3 to a sequence with
# 10 timesteps, with 64 output filters
model = Sequential()
model.add(LocallyConnected1D(64, 3, input_shape=(10, 32)))
# now model.output_shape == (None, 8, 64)
# add a new conv1d on top
model.add(LocallyConnected1D(32, 3))
# now model.output_shape == (None, 6, 32)
```
__Arguments__
- __filters__: Integer, the dimensionality of the output space
(i.e. the number of output filters in the convolution).
- __kernel_size__: An integer or tuple/list of a single integer,
specifying the length of the 1D convolution window.
- __strides__: An integer or tuple/list of a single integer,
specifying the stride length of the convolution.
Specifying any stride value != 1 is incompatible with specifying
any `dilation_rate` value != 1.
- __padding__: Currently only supports `"valid"` (case-insensitive).
`"same"` may be supported in the future.
- __data_format__: String, one of `channels_first`, `channels_last`.
- __activation__: Activation function to use
(see [activations](../activations.md)).
If you don't specify anything, no activation is applied
(ie. "linear" activation: `a(x) = x`).
- __use_bias__: Boolean, whether the layer uses a bias vector.
- __kernel_initializer__: Initializer for the `kernel` weights matrix
(see [initializers](../initializers.md)).
- __bias_initializer__: Initializer for the bias vector
(see [initializers](../initializers.md)).
- __kernel_regularizer__: Regularizer function applied to
the `kernel` weights matrix
(see [regularizer](../regularizers.md)).
- __bias_regularizer__: Regularizer function applied to the bias vector
(see [regularizer](../regularizers.md)).
- __activity_regularizer__: Regularizer function applied to
the output of the layer (its "activation").
(see [regularizer](../regularizers.md)).
- __kernel_constraint__: Constraint function applied to the kernel matrix
(see [constraints](../constraints.md)).
- __bias_constraint__: Constraint function applied to the bias vector
(see [constraints](../constraints.md)).
__Input shape__
3D tensor with shape: `(batch_size, steps, input_dim)`
__Output shape__
3D tensor with shape: `(batch_size, new_steps, filters)`
`steps` value might have changed due to padding or strides.
----
<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/layers/local.py#L183)</span>
### LocallyConnected2D
```python
keras.layers.LocallyConnected2D(filters, kernel_size, strides=(1, 1), padding='valid', data_format=None, activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None)
```
Locally-connected layer for 2D inputs.
The `LocallyConnected2D` layer works similarly
to the `Conv2D` layer, except that weights are unshared,
that is, a different set of filters is applied at each
different patch of the input.
__Examples__
```python
# apply a 3x3 unshared weights convolution with 64 output filters
# on a 32x32 image with `data_format="channels_last"`:
model = Sequential()
model.add(LocallyConnected2D(64, (3, 3), input_shape=(32, 32, 3)))
# now model.output_shape == (None, 30, 30, 64)
# notice that this layer will consume (30*30)*(3*3*3*64)
# + (30*30)*64 parameters
# add a 3x3 unshared weights convolution on top, with 32 output filters:
model.add(LocallyConnected2D(32, (3, 3)))
# now model.output_shape == (None, 28, 28, 32)
```
__Arguments__
- __filters__: Integer, the dimensionality of the output space
(i.e. the number of output filters in the convolution).
- __kernel_size__: An integer or tuple/list of 2 integers, specifying the
width and height of the 2D convolution window.
Can be a single integer to specify the same value for
all spatial dimensions.
- __strides__: An integer or tuple/list of 2 integers,
specifying the strides of the convolution along the width and height.
Can be a single integer to specify the same value for
all spatial dimensions.
- __padding__: Currently only support `"valid"` (case-insensitive).
`"same"` will be supported in future.
- __data_format__: A string,
one of `channels_last` (default) or `channels_first`.
The ordering of the dimensions in the inputs.
`channels_last` corresponds to inputs with shape
`(batch, height, width, channels)` while `channels_first`
corresponds to inputs with shape
`(batch, channels, height, width)`.
It defaults to the `image_data_format` value found in your
Keras config file at `~/.keras/keras.json`.
If you never set it, then it will be "channels_last".
- __activation__: Activation function to use
(see [activations](../activations.md)).
If you don't specify anything, no activation is applied
(ie. "linear" activation: `a(x) = x`).
- __use_bias__: Boolean, whether the layer uses a bias vector.
- __kernel_initializer__: Initializer for the `kernel` weights matrix
(see [initializers](../initializers.md)).
- __bias_initializer__: Initializer for the bias vector
(see [initializers](../initializers.md)).
- __kernel_regularizer__: Regularizer function applied to
the `kernel` weights matrix
(see [regularizer](../regularizers.md)).
- __bias_regularizer__: Regularizer function applied to the bias vector
(see [regularizer](../regularizers.md)).
- __activity_regularizer__: Regularizer function applied to
the output of the layer (its "activation").
(see [regularizer](../regularizers.md)).
- __kernel_constraint__: Constraint function applied to the kernel matrix
(see [constraints](../constraints.md)).
- __bias_constraint__: Constraint function applied to the bias vector
(see [constraints](../constraints.md)).
__Input shape__
4D tensor with shape:
`(samples, channels, rows, cols)` if data_format='channels_first'
or 4D tensor with shape:
`(samples, rows, cols, channels)` if data_format='channels_last'.
__Output shape__
4D tensor with shape:
`(samples, filters, new_rows, new_cols)` if data_format='channels_first'
or 4D tensor with shape:
`(samples, new_rows, new_cols, filters)` if data_format='channels_last'.
`rows` and `cols` values might have changed due to padding.
|