File: merge.md

package info (click to toggle)
keras 2.3.1%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 9,288 kB
  • sloc: python: 48,266; javascript: 1,794; xml: 297; makefile: 36; sh: 30
file content (375 lines) | stat: -rw-r--r-- 7,803 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/layers/merge.py#L200)</span>
### Add

```python
keras.layers.Add()
```

Layer that adds a list of inputs.

It takes as input a list of tensors,
all of the same shape, and returns
a single tensor (also of the same shape).

__Examples__


```python
import keras

input1 = keras.layers.Input(shape=(16,))
x1 = keras.layers.Dense(8, activation='relu')(input1)
input2 = keras.layers.Input(shape=(32,))
x2 = keras.layers.Dense(8, activation='relu')(input2)
# equivalent to added = keras.layers.add([x1, x2])
added = keras.layers.Add()([x1, x2])

out = keras.layers.Dense(4)(added)
model = keras.models.Model(inputs=[input1, input2], outputs=out)
```
    
----

<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/layers/merge.py#L231)</span>
### Subtract

```python
keras.layers.Subtract()
```

Layer that subtracts two inputs.

It takes as input a list of tensors of size 2,
both of the same shape, and returns a single tensor, (inputs[0] - inputs[1]),
also of the same shape.

__Examples__


```python
import keras

input1 = keras.layers.Input(shape=(16,))
x1 = keras.layers.Dense(8, activation='relu')(input1)
input2 = keras.layers.Input(shape=(32,))
x2 = keras.layers.Dense(8, activation='relu')(input2)
# Equivalent to subtracted = keras.layers.subtract([x1, x2])
subtracted = keras.layers.Subtract()([x1, x2])

out = keras.layers.Dense(4)(subtracted)
model = keras.models.Model(inputs=[input1, input2], outputs=out)
```
    
----

<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/layers/merge.py#L268)</span>
### Multiply

```python
keras.layers.Multiply()
```

Layer that multiplies (element-wise) a list of inputs.

It takes as input a list of tensors,
all of the same shape, and returns
a single tensor (also of the same shape).

----

<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/layers/merge.py#L283)</span>
### Average

```python
keras.layers.Average()
```

Layer that averages a list of inputs.

It takes as input a list of tensors,
all of the same shape, and returns
a single tensor (also of the same shape).

----

<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/layers/merge.py#L298)</span>
### Maximum

```python
keras.layers.Maximum()
```

Layer that computes the maximum (element-wise) a list of inputs.

It takes as input a list of tensors,
all of the same shape, and returns
a single tensor (also of the same shape).

----

<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/layers/merge.py#L313)</span>
### Minimum

```python
keras.layers.Minimum()
```

Layer that computes the minimum (element-wise) a list of inputs.

It takes as input a list of tensors,
all of the same shape, and returns
a single tensor (also of the same shape).

----

<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/layers/merge.py#L328)</span>
### Concatenate

```python
keras.layers.Concatenate(axis=-1)
```

Layer that concatenates a list of inputs.

It takes as input a list of tensors,
all of the same shape except for the concatenation axis,
and returns a single tensor, the concatenation of all inputs.

__Arguments__

- __axis__: Axis along which to concatenate.
- __**kwargs__: standard layer keyword arguments.
    
----

<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/layers/merge.py#L416)</span>
### Dot

```python
keras.layers.Dot(axes, normalize=False)
```

Layer that computes a dot product between samples in two tensors.

E.g. if applied to a list of two tensors `a` and `b` of shape `(batch_size, n)`,
the output will be a tensor of shape `(batch_size, 1)`
where each entry `i` will be the dot product between
`a[i]` and `b[i]`.

__Arguments__

- __axes__: Integer or tuple of integers,
    axis or axes along which to take the dot product.
- __normalize__: Whether to L2-normalize samples along the
    dot product axis before taking the dot product.
    If set to True, then the output of the dot product
    is the cosine proximity between the two samples.
- __**kwargs__: Standard layer keyword arguments.
    
----

### add


```python
keras.layers.add(inputs)
```


Functional interface to the `Add` layer.

__Arguments__

- __inputs__: A list of input tensors (at least 2).
- __**kwargs__: Standard layer keyword arguments.

__Returns__

A tensor, the sum of the inputs.

__Examples__


```python
import keras

input1 = keras.layers.Input(shape=(16,))
x1 = keras.layers.Dense(8, activation='relu')(input1)
input2 = keras.layers.Input(shape=(32,))
x2 = keras.layers.Dense(8, activation='relu')(input2)
added = keras.layers.add([x1, x2])

out = keras.layers.Dense(4)(added)
model = keras.models.Model(inputs=[input1, input2], outputs=out)
```
    
----

### subtract


```python
keras.layers.subtract(inputs)
```


Functional interface to the `Subtract` layer.

__Arguments__

- __inputs__: A list of input tensors (exactly 2).
- __**kwargs__: Standard layer keyword arguments.

__Returns__

A tensor, the difference of the inputs.

__Examples__


```python
import keras

input1 = keras.layers.Input(shape=(16,))
x1 = keras.layers.Dense(8, activation='relu')(input1)
input2 = keras.layers.Input(shape=(32,))
x2 = keras.layers.Dense(8, activation='relu')(input2)
subtracted = keras.layers.subtract([x1, x2])

out = keras.layers.Dense(4)(subtracted)
model = keras.models.Model(inputs=[input1, input2], outputs=out)
```
    
----

### multiply


```python
keras.layers.multiply(inputs)
```


Functional interface to the `Multiply` layer.

__Arguments__

- __inputs__: A list of input tensors (at least 2).
- __**kwargs__: Standard layer keyword arguments.

__Returns__

A tensor, the element-wise product of the inputs.
    
----

### average


```python
keras.layers.average(inputs)
```


Functional interface to the `Average` layer.

__Arguments__

- __inputs__: A list of input tensors (at least 2).
- __**kwargs__: Standard layer keyword arguments.

__Returns__

A tensor, the average of the inputs.
    
----

### maximum


```python
keras.layers.maximum(inputs)
```


Functional interface to the `Maximum` layer.

__Arguments__

- __inputs__: A list of input tensors (at least 2).
- __**kwargs__: Standard layer keyword arguments.

__Returns__

A tensor, the element-wise maximum of the inputs.
    
----

### minimum


```python
keras.layers.minimum(inputs)
```


Functional interface to the `Minimum` layer.

__Arguments__

- __inputs__: A list of input tensors (at least 2).
- __**kwargs__: Standard layer keyword arguments.

__Returns__

A tensor, the element-wise minimum of the inputs.
    
----

### concatenate


```python
keras.layers.concatenate(inputs, axis=-1)
```


Functional interface to the `Concatenate` layer.

__Arguments__

- __inputs__: A list of input tensors (at least 2).
- __axis__: Concatenation axis.
- __**kwargs__: Standard layer keyword arguments.

__Returns__

A tensor, the concatenation of the inputs alongside axis `axis`.
    
----

### dot


```python
keras.layers.dot(inputs, axes, normalize=False)
```


Functional interface to the `Dot` layer.

__Arguments__

- __inputs__: A list of input tensors (at least 2).
- __axes__: Integer or tuple of integers,
    axis or axes along which to take the dot product.
- __normalize__: Whether to L2-normalize samples along the
    dot product axis before taking the dot product.
    If set to True, then the output of the dot product
    is the cosine proximity between the two samples.
- __**kwargs__: Standard layer keyword arguments.

__Returns__

A tensor, the dot product of the samples from the inputs.